2020_2021学年高中数学第二章统计课时跟踪训练含解析(6份打包)新人教A版必修3

文档属性

名称 2020_2021学年高中数学第二章统计课时跟踪训练含解析(6份打包)新人教A版必修3
格式 zip
文件大小 1.2MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2021-02-28 21:43:45

文档简介

第二章 统计
2.1 随机抽样
2.1.1 简单随机抽样
[A组 学业达标]
1.关于简单随机抽样的特点,以下几种说法中不正确的是
(  )
A.要求总体中的个体数有限
B.从总体中逐个抽取
C.这是一种不放回抽样
D.每个个体被抽到的机会不一样,与先后顺序有关
解析:简单随机抽样,除具有A、B、C三个特点外,还具有:是等可能抽样,每个个体被抽取的机会相等,与先后顺序无关.
答案:D
2.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是
(  )
A.40     
B.50
C.120
D.150
解析:由于样本容量即样本的个数,抽取的样本的个数为40×3=120.
答案:C
3.用随机数表法进行抽样有以下几个步骤:
①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为
(  )
A.①②③④
B.①③④②
C.③②①④
D.④③①②
解析:B.先编号,再选数.
答案:B
4.下列抽样试验中,适合用抽签法的是
(  )
A.从某厂生产的3
000件产品中抽取600件进行质量检验
B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验
D.从某厂生产的3
000件产品中抽取10件进行质量检验
解析:A、D中个体总数较大,不适合用抽签法;C中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看成是搅拌均匀了.
答案:B
5.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性的大小关系是
(  )
A.相等
B.“第一次被抽到”的可能性大
C.“第二次被抽到”的可能性大
D.无法比较
解析:根据简单随机抽样的定义知选A.
答案:A
6.要检查一个工厂产品的合格率,从1
000件产品中抽出50件进行检查,检查者在其中随意抽取了50件,这种抽样法可称为__________.
解析:由简单随机抽样的特点可知,该抽样方法是简单随机抽样.
答案:简单随机抽样
7.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是__________.
答案:抽签法
8.一个总体的60个个体编号为00,01,…,59,现需从中抽取一容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列开始,向右读取,直到取足样本,则抽取样本的号码是__________.
95
33
95
22
00 18
74
72
00
18 38
79
58
69
32
81
76
80
26
92 82
80
84
25
39 90
84
60
79
80
24
36
59
87
38 82
07
53
89
35 96
35
23
79
18
05
98
90
07
35 46
40
62
98
80 54
97
20
56
95
15
74
80
08
32 16
46
70
50
80 67
72
16
42
79
20
31
89
03
43 38
46
82
68
72 32
14
82
99
70
80
60
47
18
97 63
49
30
21
30 71
59
73
05
50
08
22
23
71
77 91
01
93
20
49 82
96
59
26
94
66
39
67
98
60
解析:所取的号码要在00~59之间且重复出现的号码仅取一次.
答案:18,00,38,58,32,26,25,39
9.某校高一年级有43名足球运动员,要从中抽出5人抽查学习负担情况.用抽签法设计一个抽样方案.
解析:第一步,编号,把43名运动员编号为1~43;
第二步,制签,做好大小、形状相同的号签,分别写上这43个数;
第三步,搅拌,将这些号签放在暗箱中,进行均匀搅拌;
第四步,抽签入样,每次从中抽取一个,连续抽取5次,从而得到容量为5的入选样本.
10.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数表法设计抽样方案?
解析:(1)将元件的编号调整为010,011,012,…,099,100,…,600;
(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7列数“9”,向右读;
(3)从数“9”开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263;
(4)以上号码对应的6个元件就是要抽取的样本.
[B组 能力提升]
11.采用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,某个个体前两次未被抽到,则第三次被抽到的机会是
(  )
A.
B.
C.
D.
解析:从含有6个个体的总体中,抽取容量为3的样本,则每个个体在每次被抽到的机会都是,这与第几次抽取无关.
答案:C
12.下列调查的样本合理的是__________.
①在校内发出一千张印有全校各班级的选票,要求被调查学生在其中一个班级旁画“√”,以了解最受欢迎的教师是谁;②从一万多名工人中,经过选举,确定100名代表,然后投票表决,了解工人们对厂长的信任情况;③到老年公寓进行调查,了解全市老年人的健康状况;④为了了解全班同学每天的睡眠时间,在每个小组中各选取3名学生进行调查.
解析:①中样本不具有代表性、有效性,在班级前画“√”与了解最受欢迎的老师没有关系;③中样本缺乏代表性;而②④是合理的样本.
答案:②④
13.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N=__________.
解析:=25%,因此N=120.
答案:120
14.某中学从40名学生中选1人作为该市男篮啦啦队的成员,采用下面两种选法:
选法一 将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;
选法二 将39个白球与1个红球混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为啦啦队成员(摸出球后不放回).
试问这两种选法是否都是抽签法?为什么?这两种选法有何异同?
解析:选法二不是抽签法,因为抽签法要求所有的号签编号互不相同,而选法二中39个白球无法相互区分.这两种选法的相同之处在于每名学生被选中的机会都一样,都等于.
15.现在有一种够级游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人,并围成一圈.够级开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定抓牌的先后,这6人依次从216张牌中抓取36张牌,问这种抓牌的方法是否是简单随机抽样?
解析:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始的牌,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简单随机抽样.
PAGE第二章 统计
2.1 随机抽样
2.1.2 系统抽样
[A组 学业达标]
1.某校高三年级有12个班,每个班随机的按1~50号排学号,为了了解某项情况,要求每班学号为20的同学去开座谈会,这里运用的是
(  )
A.抽签法    
B.随机数表法
C.系统抽样法
D.以上都不是
答案:C
2.为了了解参加某次知识竞赛的1252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么从总体中应随机剔除的个体数目为
(  )
A.2
B.3
C.4
D.5
解析:因为1252=50×25+2,所以应随机剔除2个个体,故选A.
答案:A
3.从2
007名学生中选取50名参加全国高中数学联赛,若采用下面的方法选取:先用简单随机抽样从2
007人中剔除7人,剩下的2
000人再按系统抽样的方法抽取,则每人入选的可能性
(  )
A.不全相等
B.均不相等
C.都相等,且为
D.都相等,且为
答案:C
4.为了了解某地参加计算机水平测试的5
008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样方法抽取样本时,每组的容量为
(  )
A.24
B.25
C.26
D.28
解析:5
008除以200的整数商为25,∴选B.
答案:B
5.用系统抽样法(按等距离的规则)从160名学生中抽取容量为20的样本,将这160名学生从1到160编号.按编号顺序平均分成20段(1~8号,9~16号,…,153~160号),若第16段应抽出的号码为125,则第1段中用简单随机抽样确定的号码是
(  )
A.7
B.5
C.4
D.3
解析:用系统抽样知,每段中有8人,第16段应为从121到128这8个号码,125是其中的第5个号码,所以第一段中被确定的号码是5.
答案:B
6.从高一(八)班42名学生中,抽取7名学生了解本次考试数学成绩状况,已知本班学生学号是1~42号,现在该班数学老师已经确定抽取6号,那么,用系统抽样法确定其余学生号码为__________.
答案:12,18,24,30,36,42
7.某学校有学生4
022人.为了解学生对2019年期末考试数学试题难易情况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是__________.
解析:由于不是整数,所以应从4
022名学生中用简单随机抽样剔除2名,则分段间隔是=134.
答案:134
8.某单位有技术工人36人,技术员24人,行政人员12人,现需从中抽取一个容量为n(4解析:总体容量为72,由题意可知n能被72整除,n+1能被70整除,因为,4答案:6
9.某集团有员工1
019人,其中获得过国家级表彰的有29人,其他人员990人.该集团拟组织一次出国学习,参加人员确定为:获得过国家级表彰的人员5人,其他人员30人.如何确定人选?
解析:获得过国家级表彰的人员选5人,适宜使用抽签法;其他人员选30人,适用使用系统抽样法.
(1)确定获得过国家级表彰的人员人选:
①用随机方式给29人编号,号码为1,2,…,29;
②将这29个号码分别写在一个小纸条上,揉成小球,制成号签;
③将得到的号签放入一个不透明的袋子中,搅拌均匀;
④从袋子中逐个抽取5个号签,并记录上面的号码;
⑤从总体中将与抽取的号签的号码相一致的个体取出,人选就确定了.
(2)确定其他人员人选:
第一步:将990人其他人员重新编号(分别为1,2,…,990),并分成30段,每段33人;
第二步,在第一段1,2,…,33这33个编号中用简单随机抽样法抽出一个(如3)作为起始号码;
第三步,将编号为3,36,69,…,960的个体抽出,人选就确定了.
(1),(2)确定的人选合在一起就是最终确定的人选.
10.从某厂生产的802辆轿车中抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.
解析:第一步,先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);
第二步,将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含k==10个个体;
第三步,从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个号(如5)作为起始号;
第四步,从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.
[B组 能力提升]
11.从1
008名学生中抽取20人参加义务劳动,规定采用下列方法选取:先用简单随机抽样从1
008人中剔除8人,剩下1
000人再按系统抽样的方法抽取,那么在1
008人中每个人入选的可能性为
(  )
A.都相等且等于
B.都相等且等于
C.不全相等
D.均不相等
解析:从1
008名学生中抽取20人参加义务劳动,每人入选的可能性相等且等于=,故选B.
答案:B
12.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为
(  )
A.11
B.12
C.13
D.14
解析:根据系统抽样的方法结合不等式求解.
抽样间隔为=20.设在1,2,…,20中抽取号码x0(x0∈[1,20]),在[481,720]之间抽取的号码记为20k+x0,则481≤20k+x0≤720,k∈N
.
∴24≤k+≤36.
∵∈,∴k=24,25,26,…35,
∴k值共有35-24+1=12(个),即所求人数为12.
答案:B
13.将参加数学竞赛的1
000名学生编号如下:0
001,0
002,0
003,…,1
000,计划从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0
001,0
002,…,0
020,第一部分随机抽取一个号码为0
015,则抽取的第40个号码应为__________.
解析:根据系统抽样的规则,抽取的第40个号码为15+(40-1)×20=795.
答案:0
795
14.一个总体中有100个个体,随机编号为00,01,02,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是__________.
解析:由题意知第7组中的数为“60~69”10个数.由题意知m=6,k=7,故m+k=13,其个位数字为3,即第7组中抽取的号码的个位数是3,综上知第7组中抽取的号码为63.
答案:63
15.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:
本村人口:1
200人,户数300,每户平均人口数4人;
应抽户数:30户;
抽样间隔:=40;
确定随机数字:取一张人民币,编码的后两位数为12;
确定第一样本户:编码的后两位数为12的户为第一样本户;
确定第二样本户:12+40=52,52号为第二样本户;
……
(1)该村委采用了何种抽样方法?
(2)抽样过程中存在哪些问题,并修改.
(3)何处是用简单随机抽样.
解析:(1)系统抽样.
(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:
=10,其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….
(3)确定随机数字用的是简单随机抽样.
16.一个总体中的1
000个个体编号为0,1,2,…,999,并依次将其均分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.
(1)当x=24时,写出所抽取样本的10个号码;
(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.
解析:(1)由题意此系统抽样的间隔是100,根据x=24和题意得,24+33×1=57,第二组抽取的号码是157;由24+33×2=90,则在第三组抽取的号码是290,…
故依次是24,157,290,323,456,589,622,755,888,921.
(2)由x+33×0=87得x=87,由x+33×1=87得x=54,由x+33×3=187得x=88…,
依次求得x值可能为21,22,23,54,55,56,87,88,89,90.
PAGE第二章 统计
2.1 随机抽样
2.1.3 分层抽样
[A组 学业达标]
1.某中学有高中生3
500人,初中生1
500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为
(  )
A.100     
B.150
C.200
D.250
解析:由题意得,=,解得n=100.
答案:A
2.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则
(  )
A.p1=p2B.p2=p3C.p1=p3D.p1=p2=p3
解析:不管是简单随机抽样、系统抽样还是分层抽样,它们都是等可能抽样,每个个体被抽中的概率均为.
答案:D
3.为了保证分层抽样时每个个体被等可能地抽取,必须要求
(  )
A.每层等可能抽取
B.每层抽取的个体数相等
C.每层抽取的个体数可以不一样多,但必须满足抽取ni=n·(i=1,2,…,k)个个体(其中i是层的序号,k是总层数,n为抽取的样本容量,Ni是第i层中的个体数,N是总体容量)
D.只要抽取的样本容量一定,每层抽取的个体数没有限制
解析:分层抽样时,在各层中按层中所含个体在总体中所占的比例进行抽样.A中,虽然每层等可能地抽样,但是没有指明各层中应抽取几个个体,故A不正确;B中,由于每层的个体数不一定相等,每层抽取同样多的个体数,显然从总体来看,各层的个体被抽取的可能性就不相等了,因此B也不正确;
C中,对于第i层的每个个体,它被抽到的可能性与层数i无关,即对于每个个体来说,被抽取为样本的可能性是相同的,故C正确;D显然不正确.
答案:C
4.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为
(  )
A.60
B.80
C.120
D.180
解析:11~12岁回收180份,其中在11~12岁学生问卷中抽取60份,抽样比为,因为分层抽取样本的容量为300,故回收问卷总数为=900份,故x=900-120-180-240=360份,360×=120份.
答案:C
5.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性是__________.
解析:在分层抽样中,每个个体被抽取的可能性相等,且为.所以每个个体被抽取的可能性是=.
答案:
6.某企业三月中旬生产A,B,C三种产品共3
000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:
产品类型
A
B
C
产品数量(件)
1
300
样本容量
130
由于不小心,表格中A,C两种产品的有关数据已被污染看不清楚了,统计员只记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是__________件.
解析:抽样比130∶1
300=1∶10,即每10个产品中取1个个体,又A产品的样本容量比C产品的多10,故A产品比C产品多100件,故(3
000-1300-100)=800(件)为C产品数量.
答案:800
7.下列问题中,采用怎样的抽样方法较为合理?
(1)从10台电冰箱中抽取3台进行质量检查;
(2)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本;
(3)体育彩票000
001~100
000编号中,凡彩票号码最后三位数为345的中一等奖.
(1)__________ (2)__________ (3)__________.
解析:
题号
判断
原因分析
(1)
抽签法
总体容量较小,宜用抽签法
(2)
分层抽样
由于学校各类人员对这一问题的看法可能差异较大,用分层抽样
(3)
系统抽样
总体容量大,样本容量较大,等距抽取,用系统抽样
答案:(1)抽签法 (2)分层抽样 (3)系统抽样
8.某单位有2
000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:
人数
管理
技术开发
营销
生产
合计
老年
40
40
40
80
200
中年
80
120
160
240
600
青年
40
160
280
720
1
200
合计
160
320
480
1
040
2
000
(1)若要抽取40人调查身体状况,则应怎样抽样?
(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?
解析:(1)按老年、中年、青年分层抽样,
抽取比例为=.
故老年人,中年人,青年人各抽取4人,12人,24人,(2)按管理、技术开发、营销、生产进行分层,用分层抽样,抽取比例为=,
故管理,技术开发,营销,生产各抽取2人,4人,6人,13人.
9.为了考察某校的教学水平,抽查了该学校高三年级部分学生的本年度考试成绩.为了全面地反映实际情况,采取以下三种考察方式(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).
①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;
②每个班都抽取1人,共计14人,考察这14个学生的成绩;
③把该校高三年级的学生按成绩分成优秀,良好,普通三个级别,从中抽取100名学生进行考查(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).
根据上面的叙述,试回答下列问题:
(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?
(2)上面三种抽取方式各自采用何种抽取样本的方法?
(3)试分别写出上面三种抽取方法各自抽取样本的步骤.
解析:(1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第二种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.
(2)第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.
(3)第一种方式抽样的步骤如下:
第一步:在这14个班中用抽签法任意抽取一个班;
第二步:从这个班中按学号用随机数表法或抽签法抽取14名学生,考察其考试成绩.
第二种方式抽样的步骤如下:
第一步:在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为
x;
第二步:在其余的13个班中,选取学号为x+50k(1≤k≤13,k∈Z)的学生,共计14人.
第三种方式抽样的步骤如下:
第一步:分层,因为若按成绩分,其中优秀生共105人,良好生共420人,普通生共175人,所以在抽取样本中,应该把全体学生分成三个层次;
第二步:确定各个层次抽取的人数,因为样本容量与总体数的比为100∶700=1∶7,所以在每个层抽取的个体数依次为,,,即15,60,25;
第三步:按层分别抽取,在优秀生中用简单随机抽样法抽取15人,在良好生中用简单随机抽样法抽取60人,在普通生中用简单随机抽样法抽取25人.
第四步:将所抽取的个体组合在一起构成样本.
[B组 能力提升]
10.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为
(  )
A.200,20
B.100,20
C.200,10
D.100,10
解析:该地区中小学生总人数为
3
500+2
000+4
500=10
000人,
则样本容量为10
000×2%=200人,其中抽取的高中生近视人数为
2
000×2%×50%=20.
答案:A
11.某初级中学共有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人进行某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为001,002,003,…,270;使用系统抽样时,将学生统一随机编号为001,002,003,…,270,并将整个编号平均分为10段.如果抽得的号码有下列四种情况:
①007,034,061,088,115,142,169,196,223,250;
②005,009,100,107,111,121,180,195,200,265;
③011,038,065,092,119,146,173,200,227,254;
④036,062,088,114,140,166,192,218,244,270.
关于上述样本的下列结论中,正确的是
(  )
A.②③都不能为系统抽样
B.②④都不能为分层抽样
C.①④都可能为系统抽样
D.①③都可能为分层抽样
解析:系统抽样又称为“等距抽样”,做到等距的有①③④,但只做到等距还不一定是系统抽样,还应做到10段中每段要抽1个,检查这一点只需看第一个元素是否在001~027范围内,结果发现④不符合,同时,若为系统抽样,则分段间隔k==27,④也不符合这一要求,所以可能是系统抽样的为①③,因此排除A,C;若采用分层抽样,一、二、三年级的人数比例为4∶3∶3,由于共抽取10人,所以三个年级应分别抽取4人、3人、3人,即在001~108范围内要有4个编号,在109~189和190~270范围内要分别有3个编号,符合此要求的有①②③,即它们都可能为分层抽样(其中①③在每一层内采用了系统抽样,②在每一层内采用了简单随机抽样),所以排除B.
答案:D
12.山东某高中针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:
高一年级
高二年级
高三年级
泥塑
a
b
c
剪纸
x
y
z
其中x∶y∶z=5∶3∶2,且“泥塑”社团的人数占两个社团总人数的,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取__________人.
解析:因为“泥塑”社团的人数占总人数的,故“剪纸”社团的人数占总人数的,所以“剪纸”社团的人数为800×=320.因为“剪纸”社团中高二年级人数比例为==,所以“剪纸”社团中高二年级人数为320×=96.由题意知,抽样比为=,所以从高二年级“剪纸”社团中抽取的人数为96×=6.
答案:6
13.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工只能参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%;登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
解析:(1)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a,b,c,
则有=47.5%,=10%.
解得b=50%,c=10%.
故a=1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占的比例为40%,50%,10%.
(2)游泳组中,抽取的青年人人数为200××40%=60;
抽取的中年人人数为200××50%=75;
抽取的老年人人数为200××10%=15.
14.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3
000名初中生、4
000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.
(1)应如何抽取才能得到比较客观的评价结论?
(2)要从3
000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?
(3)为了从4
000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?
解析:(1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.
因为样本容量为120,总体个数为500+3
000+4
000=7
500,则抽样比:=,
所以有500×=8,3
000×=48,
4
000×=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.
分层抽样的步骤是
①分层:分为教职员工、初中生、高中生,共三层.
②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.
③各层分别按简单随机抽样或系统抽样的方法抽取样本.
④综合每层抽样,组成样本.
这样便完成了整个抽样过程,就能得到比较客观的评价结论.
(2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3
000个号签,费时费力,因此采用随机数法抽取样本,步骤是
①编号:将3
000份答卷都编上号码:0
001,0
002,0
003,…,3
000.
②在随机数表上随机选取一个起始位置.
③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于
3
000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.
(3)由于4
000÷64=62.5不是整数,则应先使用简单随机抽样从4
000名学生中随机剔除32个个体,再将剩余的3
968个个体进行编号:1,2,…,3
968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457,…,3
929.
PAGE第二章 统计
2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布
[A组 学业达标]
1.下列命题正确的是
(  )
A.频率分布直方图中每个小矩形的面积等于相应组的频数
B.频率分布直方图的面积为对应数据的频率
C.频率分布直方图中各小矩形高(平行于纵轴的边)表示频率与组距的比
D.用茎叶图统计某运动员得分:13,51,23,8,26,38,16,33,14,28,39时,茎是指中位数26
解析:在频率分布直方图中,横轴表示样本数据;纵轴表示,由于小矩形的面积=组距×=频率,所以各小矩形的面积等于相应各组的频率,因此各小矩形面积之和等于1;在茎叶图中茎——数据的最高位数据,叶——其他位数据排列图.
答案:C
2.将容量为100的样本数据,按由小到大排列分成8个小组,如下表所示:
组号
1
2
3
4
5
6
7
8
频数
10
13
14
14
15
13
12
9
第3组的频率和累积频率为
(  )
A.0.14和0.37 
B.和
C.0.03和0.06
D.和
解析:由表可知,第三小组的频率为=0.14,累积频率为=0.37.
答案:A
3.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是
(  )
A.46,45,56
B.46,45,53
C.47,45,56
D.45,47,53
解析:直接列举求解.
由题意知各数为12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,51,54,57,59,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.
答案:A
4.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不低于60分的学生人数为
(  )
A.588
B.480
C.450
D.120
解析:由频率分布直方图知[40,60)分的频率为(0.005+0.015)×10=0.2,故估计不低于60分的学生人数为600×(1-0.2)=480.故选B.
答案:B
5.如图所示的是2009年至2018年某省城镇居民百户家庭人口数的茎叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到2009年至2018年此省城镇居民百户家庭人口数的平均数为
(  )
A.304.6
B.303.6
C.302.6
D.301.6
解析:由茎叶图得到2009年至2018年城镇居民百户家庭人口数为:291,291,295,298,302,306,310,312,314,317,
所以平均数为
==303.6.
答案:B
6.今年5月某教育网开通了网上教学,某校高一年级(8)班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图,已知从左到右各个小组的频率分别是0.15,0.25,0.35,0.20,0.05,则根据直方图所提供的信息,这一天上网学习时间在100~119分钟之间的学生人数是__________人,如果只用这40名学生这一天上网学习时间作为样本去推断该校高一年级全体学生该天的上网学习时间,这样推断是否合理?__________(填“合理”或“不合理”)
解析:由频数=样本容量×频率=40×0.35=14(人)
因为该样本的选取只在高一(8)班,不具有代表性,所以这样推断不合理.
答案:14 不合理
7.青年歌手大奖赛共有10名选手参赛,并请了7名评委.如图所示的茎叶图是7名评委给参加最后决赛的两位选手甲、乙评定的成绩,去掉一个最高分和一个最低分后,甲、乙选手剩余数据的平均成绩分别为__________、__________.
解析:甲的成绩去掉一个最高分92分和一个最低分75分后,甲的剩余数据的平均成绩为84.2分;乙的成绩去掉一个最高分93分和一个最低分79分后,乙的剩余数据的平均成绩为85分.
答案:84.2分 85分
8.某小学为了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图,3000名学生在该次数学考试中成绩小于60分的学生数是__________.
解析:在该次数学考试中成绩小于60分的共有3组,频率之和为0.02+0.06+0.12=0.2,所以在该次数学考试中成绩小于60分的学生数大约为3
000×0.2=600.
答案:600
9.如图所示是总体的一样本频率分布直方图,且在[15,18)内的频数为8.
(1)求样本容量;
(2)在该直方图中,[12,15)内小矩形面积为0.06,求样本在[12,15)内的频数;
(3)在(2)中条件下,求样本在[18,33]内的频率.
解析:(1)由题图可知[15,18)对应y轴数字为,且组距为3,故[15,18)对应频率为×3=.
又已知[15,18)内频数为8,故样本容量n==50.
(2)[12,15)内小矩形面积为0.06,即[12,15)内频率为0.06,且样本容量为50,故样本在[12,15)内的频数为50×0.06=3.
(3)由(1)(2)知样本在[12,15)内的频数为3,在[15,18)内的频数为8,样本容量为50,所以在[18,33]内的频数为50-3-8=39,在[18,33]内的频率为=0.78.
10.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表和频率分布直方图解答下列问题:
分组
频数
频率
[50.5,60.5)
4
0.08
[60.5,70.5)
0.16
[70.5,80.5)
10
[80.5,90.5)
16
0.32
[90.5,100.5]
合计
50
(1)填充频率分布表的空格(将答案直接填在表格内);
(2)补全频率分布直方图;
(3)学校决定成绩在[75.5,85.5]分的学生获二等奖,问该中学获得二等奖的学生约为多少人?
解析:(1)
分组
频数
频率
[50.5,60.5)
4
0.08
[60.5,70.5)
8
0.16
[70.5,80.5)
10
0.20
[80.5,90.5)
16
0.32
[90.5,100.5]
12
0.24
合计
50
1.00
(2)频率分布直方图如图所示:
(3)成绩在[75.5,80.5)的学生人数占成绩在[70.5,80.5)的学生人数的,因为成绩在[70.5,80.5)的频率为0.2,所以成绩在[75.5,80.5)的频率为0.1.成绩在[80.5,85.5)的学生人数占成绩在[80.5,90.5)的学生人数的,因为成绩在[80.5,90.5)的频率为0.32,所以成绩在[80.5,85.5)的频率为0.16.
所以成绩在[75.5,85.5]的频率为0.26.
因为有900名学生参加了这次竞赛,所以该中学获得二等奖的学生约为0.26×900=234(人).
[B组 能力提升]
11.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是
(  )
解析:由分组可知C,D一定不对;由茎叶图可知[0,5)有1人,[5,10)有1人,∴第一、二小组频率相同,频率分布直方图中矩形的高应相同,可排除B.故选A.
答案:A
12.在样本频率分布直方图共有11个小长方形,中间一个小长方形的面积等于其他10个小长方形面积的,且样本容量为160,则中间一组的频数为(  )
A.32
B.0.2
C.40
D.0.25
解析:设中间的小长方形的面积为x,则其他10个小长方形的面积和为4x,根据题意知x+4x=1,
∴x==0.2.
∴中间的小长方形的面积为0.2,落在中间区间的数据的频数为0.2×160=32.故选A.
答案:A
13.将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=__________.
解析:∵n·=27,
∴n=60.
答案:60
14.图1是某工厂2018年9月份10个车间产量统计条形图,条形图从左到右表示各车间的产量依次记为A1,A2,…,A10(如A3表示3号车间的产量为950件).图2是统计图1中产量在一定范围内车间个数的一个算法流程图.那么运行该算法流程后输出的结果是__________.
图1
图2
解析:通过算法流程图可知,它的功能是统计产量超过950件的车间数,所以通过条形统计图可知产量超过950件的车间数为4个,所以最后输出的结果是4.
答案:4
15.为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00~10:00间各自的点击量,得如图所示的茎叶图,根据茎叶图回答下列问题.
(1)甲、乙两个网站点击量的极差分别是多少?
(2)甲网站点击量在[10,40]间的频率是多少?
(3)甲、乙两网站哪个更受欢迎?并说明理由.
解析:(1)甲网站的极差为:73-8=65,乙网站的极差为:71-5=66.
(2)=≈0.286.
(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方,从数据的分布情况来看,甲网站更受欢迎.
16.某市2019年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,
95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.
(1)完成频率分布表.
(2)作出频率分布直方图.
(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.
解析:(1)频率分布表:
分组
频数
频率
[41,51)
2
[51,61)
1
[61,71)
4
[71,81)
6
[81,91)
10
[91,101)
5
[101,111]
2
(2)频率分布直方图如图所示.
(3)答对下述两条中的一条即可:
①该市有一个月中空气污染指数有2天处于优的水平,占当月天数的;有26天处于良的水平,占当月天数的;处于优或良的天数为28,占当月天数的.说明该市空气质量基本良好.
②轻微污染有2天,占当月天数的;污染指数在80以上的接近轻微污染的天数15,加上处于轻微污染的天数2,占当月天数的,超过50%;说明该市空气质量有待进一步改善.
PAGE第二章 统计
2.2 用样本估计总体
2.2.2 用样本的数字特征估计总体的数字特征
[A组 学业达标]
1.某学习小组在一次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有4人,80分和75分的各有1人,则该小组成绩的平均数、众数、中位数分别是
(  )
A.85、85、85   
B.87、85、86
C.87、85、85
D.87、85、90
解析:从小到大列出所有数学成绩:75,80,85,85,85,85,90,90,95,100,观察知众数和中位数均为85,计算得平均数为87.
答案:C
2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则
(  )
A.甲的成绩的平均数小于乙的成绩的平均数
B.甲的成绩的中位数等于乙的成绩的中位数
C.甲的成绩的方差小于乙的成绩的方差
D.甲的成绩的极差小于乙的成绩的极差
解析:由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A错;甲、乙的成绩的中位数分别为6,5,B错;甲、乙的成绩的方差分别为×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=,C对;甲、乙的成绩的极差均为4,D错.
答案:C
3.已知数据x1,x2,x3,…,xn是我省普通职工n(n≥3,n∈N
)个人的年收入,设这n个数据的中位数为x,平均数为y,方差为z,如果再加上世界首富的年收入xn+1,则这n+1个数据中,下列说法正确的是
(  )
A.年收入平均数大大增大,中位数一定变大,方差可能不变
B.年收入平均数大大增大,中位数可能不变,方差变大
C.年收入平均数大大增大,中位数可能不变,方差也不变
D.年收入平均数可能不变,中位数可能不变,方差可能不变
解析:插入大的极端值,平均数增加,中位数可能不变,方差也因为数据更加分散而变大.
答案:B
4.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.
其中根据茎叶图能得到的统计结论的编号为
(  )
A.①③
B.①④
C.②③
D.②④
解析:甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.
答案:B
5.某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45]岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是
(  )
A.31.6岁
B.32.6岁
C.33.6岁
D.36.6岁
解析:根据所给的信息可知,在区间[25,30)上的数据的频率为1-(0.01+0.07+0.06+0.02)×5=0.2.故中位数在第3组,且中位数的估计为30+(35-30)×≈33.6(岁).
答案:C
6.已知样本9,10,11,x,y的平均数是10,标准差是,则xy=__________.
解析:由平均数是10,得x+y=20,由标准差是,得
=,所以(x-10)2+(y-10)2=8,所以xy=96.
答案:96
7.甲、乙两人在相同的条件下练习射击,每人打5发子弹,命中的环数如下:
甲:6,8,9,9,8;乙:10,7,7,7,9.
则两人的射击成绩较稳定的是__________.
解析:由题意求平均数可得x甲=x乙=8,s=1.2,s=1.6,s答案:甲
8.若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差约为__________.
解析:这21个数的平均数仍为x,从而方差为×[20×0.2+(x-x)2]≈0.19.
答案:0.19
9.下面是某快餐店所有工作人员一周的收入表:
老板
大厨
二厨
采购员
杂工
服务生
会计
3
000元
450元
350元
400元
320元
320元
410元
(1)计算所有人员的周平均收入;
(2)这个平均收入能反映打工人员的周收入的一般水平吗?为什么?
(3)去掉老板的收入后,再计算平均收入,这能代表打工人员的周收入的水平吗?
解析:(1)周平均收入=(3
000+450+350+400+320+320+410)=750(元).(2)这个平均收入不能反映打工人员的周收入水平,可以看出打工人员的收入都低于平均收入,因为老板收入特别高,这是一个异常值,对平均收入产生了较大的影响,并且他不是打工人员.(3)去掉老板的收入后的周平均收入x2=(450+350+400+320+320+410)=375(元),这能代表打工人员的周收入水平.
10.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组
[75,85)
[85,95)
[95,105)
[105,115)
[115,125)
频数
6
26
38
22
8
(1)作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?
解析:(1)
(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.
质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.
所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.
(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.
由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.
[B组 能力提升]
11.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为A和B,样本标准差分别为sA和sB,则
(  )
A.A>B,sA>sB
B.AsB
C.A>B,sAD.A解析:样本A数据均小于或等于10,样本B数据均大于或等于10,故A又样本B波动范围较小,故sA>sB.
答案:B
12.某市有15个旅游景点,经计算,黄金周期间各个景点的旅游人数平均为20万,标准差为s,后来经核实,发现甲、乙两处景点统计的人数有误,甲景点实际为20万,被误统计为15万,乙景点实际为18万,被统计成23万;更正后重新计算,得到标准差为s1,则s与s1的大小关系为
(  )
A.s=s1
B.s<s1
C.s>s1
D.不能确定
解析:由已知,两次统计所得的旅游人数总数没有变,即两次统计的各景点旅游人数的平均数是相同的,设为x,
则s=,
s1=.
若比较s与s1的大小,只需比较(15-)2+(23-)2与(20-)2+(18-)2的大小即可.而(15-)2+(23-)2=754-76
+2
2,(20-)2+(18-)2=724-76
+2
2,所以(15-)2+(23-)2>(20-)2+(18-)2.从而s>s1.
答案:C
13.若40个数据的平方和是56,平均数是,则这组数据的方差是__________,标准差是__________.
解析:设这40个数据为xi(i=1,2,…,40),平均数为.
则s2=×[(x1-)2+(x2-)2+…+(x40-)2]
=[x+x+…+x+40
2-2
(x1+x2+…+x40)]

=×
=0.9.
∴s===.
答案:0.9 
14.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为__________.
解析:设样本数据为:x1,x2,x3,x4,x5,平均数=(x1+x2+x3+x4+x5)÷5=7;方差s2=[(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2]÷5=4.
从而有x1+x2+x3+x4+x5=35,①
(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2=20.②
若样本数据中的最大值为11,不妨设x5=11,则②式变为:(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2=4,由于样本数据互不相同,这是不可能成立的;若样本数据为4,6,7,8,10,代入验证知①②式均成立,此时样本数据中的最大值为10.
答案:10
15.为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下表:
天数
151~180
181~210
211~240
241~270
271~300
301~330
331~360
361~390
灯管数
1
11
18
20
25
16
7
2
(1)试估计这种日光灯的平均使用寿命;
(2)若定期更换,可选择多长时间统一更换合适?
解析:(1)各组的组中值分别为165,195,225,255,285,315,345,375,由此可算得这种日光灯的平均使用寿命约为165×1%+195×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9≈268(天).
s2=×[1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+25×(285-268)2+16×(315-268)2+7×(345-268)2+2×(375-268)2]=2
128.60.
故标准差为≈46.
估计这种日光灯的平均使用寿命约为268天,标准差约为46天,故在222天到314天之间统一更换较合适.
PAGE第二章 统计
2.3 变量间的相关关系
2.3.1 变量间的相关关系
2.3.2 两个变量的线性相关
[A组 学业达标]
1.线性回归直线是指
(  )
A.样本少数点在其上的直线
B.样本所有点在其上的直线
C.样本大部分点在其上的直线
D.样本所有点到其距离的平方和最小的直线
解析:由回归直线的求法可知回归直线是样本所有点到其距离的平方和最小的直线.
答案:D
2.设一个回归方程=3+1.2x,则变量x增加一个单位时
(  )
A.y平均增加1.2个单位
B.y平均增加3个单位
C.y平均减少1.2个单位
D.y平均减少3个单位
解析:由b=1.2>0,故选A.
答案:A
3.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是(  )
A.=-10x+200 
B.=10x+200
C.=-10x-200
D.=10x-200
解析:∵商品销售量y(件)与销售价格x(元/件)负相关,∴b<0,排除B,D.又∵x=0时,y>0,∴选A.
答案:A
4.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是
(  )
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(,)
C.若该大学某女生身高增加1
cm,则其体重约增加0.85
kg
D.若该大学某女生身高为170
cm,则可断定其体重必为58.79
kg
解析:当x=170时,
=0.85×170-85.71=58.79,体重的估计值为58.79
kg.
答案:D
5.若施肥量x(kg)与水稻产量y(kg)的线性回归方程为=5x+250,当施肥量为80
kg时,预计水稻产量约为__________
kg.
解析:把x=80
kg代入回归方程可得其预测值,
=5×80+250=650(kg).
答案:650
6.对具有线性相关关系的变量x和y,测得一组数据如下表所示.
x
2
4
5
6
8
y
30
40
60
50
70
若已求得它们的回归直线的斜率为6.5,这条回归直线的方程为__________.
解析:由题意可知==5,
==50.
即样本中心为(5,50).
设回归直线方程为=6.5x+,
∵回归直线过样本中心(,),
∴50=6.5×5+,
即=17.5,
∴回归直线方程为=6.5x+17.5.
答案:=6.5x+17.5
7.某数学老师身高176
cm,他爷爷、父亲和儿子的身高分别是173
cm、170
cm和182
cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为__________
cm.
解析:由题意,父亲身高x
cm与儿子身高y
cm对应关系如下表:
x
173
170
176
y
170
176
182
则==173,
==176,
(xi-)(yi-)=(173-173)×(170-176)+(170-173)×(176-176)+(176-173)(182-176)=18,
(xi-)2=(173-173)2+(170-173)2+(176-173)2=18.
∴==1.
∴=-
=176-173=3.
∴线性回归直线方程为=x+=x+3.
∴可估计该老师的孙子身高为182+3=185(cm).
答案:185
8.某工厂对某产品的产量与成本的资料分析后有如下数据:
产量x(千件)
2
3
5
6
成本y(万元)
7
8
9
12
(1)画出散点图;
(2)求成本y与产量x之间的线性回归方程.(结果保留两位小数)
解析:(1)散点图如图所示.
(2)设y与产量x的线性回归方程为=x+,
==4,==9,
=eq
\f((x1y1+x2y2+x3y3+x4y4)-4\o(x,\s\up6(-))
\o(y,\s\up6(-)),x+x+x+x-4\o(x,\s\up6(-))2)==1.10,
=-
=9-1.10×4=4.60.
∴回归方程为:=1.10x+4.60.
9.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)
8
8.2
8.4
8.6
8.8
9
销量y(件)
90
84
83
80
75
68
(1)求回归直线方程=x+,其中=-20,=-

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
解析:(1)由于=(8+8.2+8.4+8.6+8.8+9)=8.5,
=(90+84+83+80+75+68)=80.
所以=-
=80+20×8.5=250,
从而回归直线方程为=-20x+250.
(2)设工厂获得的利润为L元,依题意得
L=x(-20x+250)-4(-20x+250)
=-20x2+330x-1
000
=-20+361.25.
当且仅当x=8.25时,L取得最大值.
故当单价定为8.25元时,工厂可获得最大利润.
[B组 能力提升]
10.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立地作10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知在两个人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是
(  )
A.直线l1和l2有交点(s,t)
B.直线l1和l2相交,但是交点未必是点(s,t)
C.直线l1和l2由于斜率相等,所以必定平行
D.直线l1和l2必定重合
解析:由题意,结合回归直线易知只有选项A符合已知条件.
答案:A
11.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程=0.67x+54.9.
零件数x(个)
10
20
30
40
50
加工时间y(min)
62
75
81
89
现发现表中有一个数据看不清,请你推断该数据的值为__________.
解析:由已知可计算求出=30,而回归直线方程必过点(,),则=0.67×30+54.9=75,设模糊数字为a,则=75,计算得a=68.
答案:68
12.近年来,我国高等教育事业有了迅速发展,为了解某省从2000年到2014年18岁到24岁的青年人每年考入大学的人数,我们把农村、县镇和城市分别标记为一组、二组、三组分开统计.为了便于计算,把2000年编号为1,2001年编号为2,…,2014年编号为15,如果把年份从1到15作为自变量进行回归分析,可得三个回归方程:农村:=0.42x+1.80;县镇:=2.32x+6.72;城市:=2.84x+9.50(的单位是万).则下列说法中正确的是________.(把你认为正确说法的序号填上)
①三个组的两个变量都是正相关关系;②对于县镇组而言,每年考入大学的人数约是上一年的2.32倍;③在这一阶段,城市组的大学入学人数增长最快;④0.42表示农村青年考入大学的人数以每年约4
200人递增.
解析:①由于三个组的线性回归方程中x的系数均为正数,故三个组的两个变量都是正相关关系,故①正确;②中县镇组的线性回归直线方程=2.32x+6.72的意义是县镇考入大学的人数每年大约比上一年增加23
200人,故②不正确,由此可推知④正确;由于三个组的线性回归方程中,城市组所对应的方程的x的系数最大,表示城市组入学人数增加得最快,故③正确.
答案:①③④
13.一项关于16艘轮船的研究中,船的吨位区间为[192,3
246](单位:吨),船员的人数为5~32人,船员人数y关于吨位x的回归方程为=9.5+0.006
2x,
(1)若两艘船的吨位相差1
000,求船员平均相差人数;
(2)估计吨位最大的船和最小的船的船员人数.
解析:(1)设两艘船的吨位分别为x1,x2则
1-2=9.5+0.006
2x1-(9.5+0.006
2x2)
=0.006
2×1
000≈6,
即船员平均相差6人.
(2)当x=192时,=9.5+0.006
2×192≈11,
当x=3
246时,=9.5+0.006
2×3
246≈30.
即估计吨位最大和最小的船的船员数分别为30和11.
14.在某种产品表面进行腐蚀性实验,得到腐蚀深度与腐蚀时间之间对应的一组数据:
时间t(s)
5
10
15
20
30
40
50
60
70
90
120
深度y(mm)
6
10
10
13
16
17
19
23
25
29
46
(1)画出散点图;
(2)试求腐蚀深度y对时间t的回归直线方程.
解析:(1)散点图如图:
(2)经计算可得:
≈46.36,≈19.45,t=36
750,tiyi=13
910.
=eq
\f(\o(∑,\s\up6(11),\s\do4(i=1))tiyi-11×\o(t,\s\up6(-))
\o(y,\s\up6(-)),\o(∑,\s\up6(11),\s\do4(i=1))t-11×\o(t,\s\up6(-))2)
=≈0.3.
=-
=19.45-0.3×46.36=5.542.
故所求的回归直线方程为=0.3t+5.542.
PAGE