四年级下册数学单元测试-5。解决问题
一、单选题
1.只有一端栽树的小路上,棵树与间隔数的关系为(?? )。
A.?棵树=间隔数+1?????????????????????????B.?棵树=间隔数-1?????????????????????????C.?棵树=间隔数
2.学校环形跑道长200米,每隔10米种一棵树,一共可以种几棵?正确列式为:(?? )
A.?200÷10-1????????????????????????????????B.?200÷10????????????????????????????????C.?100÷10+1
3.一个水池上装有甲、乙两个进水管,单开甲管 小时将空池注满,单开乙管 小时将空池注满,两管同时打开,几小时可以注满空池?正确列式是(??? )。
A.?1÷( + )??????????????????????????B.?1÷(2+5)??????????????????????????C.?1÷ +1÷
4.六一节前夕,同学们布置校园,在学校大路的一边插彩旗.开始时,每隔3米插一面.当插到第10面时,发现彩旗不够,于是重插,改为每4米插一面.重插时,不需要移动位置的彩旗,除第一面外,还有(? )面.
A.?第二和第六???????????????????????B.?第三和第七???????????????????????C.?第四和第八???????????????????????D.?第五和第九
二、判断题
5.一共有1250个零件,小明每小时能装115个,小红每小时能装125个,他们5小时能装完全部零件。(?? )
6.一项工程,甲、乙合做6天完成,乙单独做8天完成,甲、乙的工作效率比是1:3。(?? )
7.甲乙两队合作修一条长180千米的公路,甲队每天修5.5千米,乙队每天修3.5千米,两队合修20天完工。(??? )
三、填空题
8.把一根长 米的木头锯成长度相等的6段,每段长________米,每段是全长的________,如果锯断一次需要2分钟,锯成6段共需要________分钟。
9.甲、乙两个工程队从两端同时开始铺一条长2160米的公路。甲队每小时铺20米,乙队每小时比甲队多铺5米。________小时后可以铺完
10.一条项链长60厘米,每隔5厘米有一颗水晶,这条项链上共有________颗水晶;为了迎接“六一”儿童节,学校进行团体操表演。五年级学生排成了一个方阵,最外层每边站了20名学生,最外层一共有________名学生。
11.在一个正方形活动场地,在它的四周插上彩旗(四个角都插),场地每边插8面,一共要插________面。
四、解答题
12.把要补充的条件和解决问题的算式用线连起来.
食堂买来240千克面粉,计划用8天,________,实际用了多少天?
①实际每天用40千克
A.240÷(240÷8×2)
②实际每天比原计划少用6千克
B.240÷40
③实际每天用的是原计划的2倍
C.240÷(240÷8-6)
13.一列客车和一列货车分别从甲乙两地同时相对开出,10小时后在途中相遇。已知货车每 小时行45km,客车每小时的速度比货车快9km,甲乙两地相距多少千米?
五、应用题
14.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。两人几小时后相遇?
参考答案
一、单选题
1.【答案】 C
【解析】【解答】 只有一端栽树的小路上,棵树与间隔数的关系为棵数=间隔数。
故答案为:C。
【分析】如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距、全长=株距×株数、株距=全长÷株数。
2.【答案】 B
【解析】【解答】解:正确列式为:200÷10
故答案为:B
【分析】在封闭路段植树,棵数=间隔数,所以用跑道的长度除以间隔的长度即可求出间隔数,也就是植树棵数。
3.【答案】 B
【解析】【解答】解:根据“工作量÷工作效率和=工作时间”列式为:1÷(2+5)。
故答案为:B。
【分析】以水池总量为单位“1”,用1除以甲的工作时间即可求出甲的工作效率,同样求出乙的工作效率,然后用1除以工作效率和即可求出注满空池的时间。
4.【答案】 D
【解析】【解答】解:3×(10﹣1)=27(米),
3的倍数有:3,6,9,12,15,18,21,24,27,30,
4的倍数有:4,8,12,16,20,24,28,
3和4小于27的公倍数有:12、24;
即在12米和24米的插旗位置不用动,
第1面是在校园的门口,第二面是离校园门口3米处,第三面是6米处…,
所以第12米处的是第五面,第24米处的是第九面.
故选:D.
【分析】每隔3米插一面,插旗的距离是3的倍数;每隔4米插一面,插旗的距离是4的倍数;重插时,不需要移动位置的彩旗,除第一面外,其他面就是3和4的公倍数的距离。3米插一面,当插到第10面时的距离是3×(10﹣1)=27米,即求3和4的公倍数的距离小于27的米数,据此解答.本题主要考查求两个数指定范围的公倍数,注意不需要移动位置的彩旗,除第一面外,是3和4的公倍数的距离,由此求解.
二、判断题
5.【答案】 错误
【解析】【解答】115+125=240
240×5=1200
1200<1250
所以5小时不能装完全部零件。
故答案为:错误。
【分析】考察了相遇问题的解决能力
6.【答案】 正确
【解析】【解答】():=:=1:3.
故答案为:正确。
【分析】工作效率=工作总量÷工作时间。工作总量设为单位“1”。先求出甲的工作效率,再求甲乙的工作效率之比。
7.【答案】 正确
【解析】【解答】解:180÷(5.5+3.5)
=180÷9
=20(天)
原题说法正确。
故答案为:正确。
【分析】用公路的总长度除以两队每天修的公路长度和即可求出合修完工需要的天数。
三、填空题
8.【答案】 ;;10
【解析】【解答】解:每段长:(米),根据分数的意义可知,每段是全长的;
(6-1)×2=10(分钟)。
故答案为:;;10。
【分析】用总长度除以锯成的段数即可求出每段的长度;根据分数的意义,把总长度平均分成6段,每段就是全长的;锯成6段,需要锯(6-1)次,用锯的次数乘每次需要的时间求出共需要的时间。
9.【答案】 48
【解析】【解答】2160÷(20+20+5)
=2160÷45
=48(小时)
故答案为:48
【分析】先用加法求出乙队每小时铺的长度,然后用总长度除以两队每小时铺的长度和即可求出铺完的时间.
10.【答案】 12;76
【解析】【解答】60÷5=12(颗);
20×4-4
=80-4
=76(人)。
故答案为:12;76。
【分析】此题主要考查了封闭线路上的植树问题,根据株数=间隔数=全长÷株距,用项链的全长÷两颗水晶之间的间隔距离=水晶的颗数,据此列式计算;
根据方阵问题的解题方法可知,顶点处的人都被统计了两次,要求最外层人数,依据每边站的人数×4-4=最外层的总人数,据此列式解答。
11.【答案】 28
【解析】【解答】解:8×4-4
=32-4
=28(面)
所以一共要插28面。
故答案为:28。
【分析】一共要插彩旗的面数=每一边插旗子的面数×正方形的边长-4(4个顶点记录了2次),代入数值计算即可。
四、解答题
12.【答案】
【解析】【解答】①实际每天用40千克,用总重量除以实际每天用的重量求出实际用了多少天;
②用原计划每天用的重量减去实际每天比原计划少用的重量,求出实际每天用的重量,用总重量除以实际每天用的重量求出实际用了多少天;
③用原计划每天用的重量乘2,求出实际每天用的重量,用总重量除以实际每天用的重量求出实际用了多少天.
故答案为:
【分析】解答此题要弄清楚数量关系:总重量÷每天用的重量=用的天数,总重量÷用的天数=每天用的重量.
13.【答案】 解:(45+9+45)×10=990(千米)
答:甲乙两地相距990千米。
【解析】【分析】题意可知,“10小时在途中相遇”说明两辆车都行了10小时,数量之间存在以下相等关系:(货车速度+客车速度)x相遇时间=总路程。或客车速度x客车行驶时间+货车速度x货车行驶时间=总路程。
五、应用题
14.【答案】 解:30÷(6+4)=3(小时)。答:两人3小时后相遇。
【解析】【分析】考察的是与简单行程有关的题目。分析题目知道求的是时间,时间等于路程除以速度,在这个题目里,路程已知,甲乙两人的速度已知,30÷(6+4)=3(小时)。