五年级下册数学一课一练 4.3长方体的体积 北师大版(含答案)

文档属性

名称 五年级下册数学一课一练 4.3长方体的体积 北师大版(含答案)
格式 docx
文件大小 41.8KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2021-03-03 08:35:26

图片预览

文档简介

五年级下册数学一课一练-4.3长方体的体积
一、单选题
1.下面( ??)的体积不能用V=sh计算。
A.?????????????????????????????????B.?????????????????????????????????C.?
2.有一块体积是1 的立方体木块,把它放在桌面上.这个木块接触桌面的面积是______.(?? )

A.?1?????????????????????????????????????B.?0.1?????????????????????????????????????C.?无法确定?????????????????????????????????????D.?0.01
3.体积是(?? )

A.?0.64 ?????????????????????????B.?4.096 ?????????????????????????C.?0.512 ?????????????????????????D.?2.56
4.把3个小正方体拼成一个长方体,这个长方体与原来相比,(??? )。
A.?总体积变小,表面积变小????????????????????????????????????B.?总体积不变,表面积变小
C.?总体积变大,表面积变大????????????????????????????????????D.?总体积不变,表面积不变
二、判断题
5.棱长是6cm的正方体,它的表面积与体积完全相等。(?? )
6.一个长方体木箱,竖着放和横着放时所占的空间不一样大.(?? )
7.用同样大小的小正方体拼成一个大正方体,最少用4个这样的小正方体。 ( )
8.一个正方体的棱长扩大到原来的3倍,它的表面积扩大到原来的6倍,体积扩大到原来的9倍。( ??)
三、填空题
9.已知长方体的体积是72dm?,它的底面积是9dm?,它的高是________dm。
10.一个正方体木块,底面周长是8分米,它的表面积是________平方分米,体积是________立方分米。
11.一个正方体的棱长总和是12dm,它的表面积是________?dm2,体积是________?dm3。
12.泥工在室内挖了一个长50米,宽30米,深2米的游泳池.如果游泳池放水使水面离池沿20厘米,大约需要水________立方米;救生员小王每天需要绕泳池走40圈,他每天要走________米.
四、解答题
13.一个圆锥形沙堆,底面周长是12.56米,高是1.2米,把这堆沙子铺在160平方米的路面上,沙子厚多少厘米?
14.一个长方体的棱长之和是72厘米,这个长方体的长是6厘米,宽是5厘米,它的体积是多少立方厘米?
五、应用题
15.有一个长方体的木料,截面是一个正方形,正方形的边长是2dm,这块木料的体积是 .这块木料的长是多少分米?
参考答案
一、单选题
1.【答案】 B
【解析】【解答】不能用V=sh计算的是第二个图形。
故答案为:B。
【分析】只要是柱体,体积都可以用底面积乘以高来计算,我们学过的柱体有长方体、正方体、圆柱;图二不是柱体。
2.【答案】 A
【解析】【解答】这个木块接触桌面的面积是一个正方形面的面积,是1dm?.
故答案为:A
【分析】体积是1dm?的立方体木块的边长是1dm,与桌面接触的面积是一个正方形面的面积,这个正方形的面积是1dm?.
3.【答案】 C
【解析】【解答】解:0.8×0.8×0.8=0.512(cm?)
故答案为:C。
【分析】正方体体积=棱长×棱长×棱长,由此根据公式计算体积即可。
4.【答案】 B
【解析】【解答】解:把3个小正方体拼成一个长方体,这个长方体与原来相比,体积不变,表面积减少。
故答案为:B。
【分析】3个小正方体拼成一个长方体,在拼的过程中体积没有变化,所以长方体的体积=1个正方体的体积×3;在拼的过程中,正方体减少了4个面,所以表面积减少了。
二、判断题
5.【答案】 错误
【解析】【解答】根据分析可知,表面积和体积是不同的两种量,不能比较大小,原题说法错误。
故答案为:错误。
【分析】已知正方体的棱长,求正方体的表面积,用公式:正方体的表面积=棱长×棱长×6,求正方体的体积,用公式:正方体的体积=棱长×棱长×棱长,表面积和体积的计算方法不同,计量单位也不同,表面积用面积单位,体积用体积单位,意义也不同,不能比较。
6.【答案】 错误
【解析】【解答】由分析可知:一个长方体木箱,竖着放和横着放时所占的空间一样大,原题说法错误。
故答案为:错误。
【分析】根据体积的定义:物体所占空间的大小叫物体的体积,一个长方体木箱,无论横放还是竖放所占的空间大小一样,据此判断。
7.【答案】 错误
【解析】【解答】应该至少8个。??
【分析】 本题综合考察了体积的换算和立方体的组合。
8.【答案】 错误
【解析】【解答】解:一个正方体的棱长扩大到原来的3倍,它的表面积扩大到原来的3×3=9倍,体积扩大到原来的3×3×3=27倍。
故答案为:错误。
【分析】正方体的表面积=棱长×棱长×6,正方体的体积=棱长×棱长×棱长,当棱长扩大到原来的3倍后,现在正方体的表面积=棱长×3×棱长×3×6=棱长×棱长×6×3=原来正方体的表面积×9,现在正方体的体积=棱长×3×棱长×3×棱长×3=棱长×棱长×27=原来正方体的体积×27。
三、填空题
9.【答案】 8
【解析】【解答】解:高=72÷9=8(dm)。
故答案为:8。
【分析】长方体的体积=底面积×高,即可得出长方体的高=长方体的体积÷底面积,代入数值计算即可。
10.【答案】 24;8
【解析】【解答】8÷4=2(厘米),2×2×6=4×6=24(平方厘米),2×2×2=4×2=8(立方厘米)
故答案为:24;8。
【分析】正方形的边长=周长÷4;正方体的表面积=棱长×棱长×6;正方体的体积=棱长×棱长×棱长。
11.【答案】 6;1
【解析】【解答】正方体的棱长:12÷12=1(dm),
正方体的表面积:
1×1×6
=1×6
=6(dm2),
正方体的体积:
1×1×1
=1×1
=1(dm3).
故答案为:6;1.
【分析】已知正方体的棱长总和,求正方体的棱长,用正方体的棱长总和÷12=正方体的棱长,要求正方体的表面积,用公式:正方体的表面积=棱长×棱长×6,要求正方体的体积,用公式:正方体的体积=棱长×棱长×棱长,据此列式解答.
12.【答案】 2700;6400
【解析】【解答】解:20厘米=0.2米
2﹣0.2=1.8(米)
50×30×1.8
=1500×1.8
=2700(立方米)
(50+30)×2×40
=80×2×40
=160×40
=6400(米)
答:这些水的体积是2700立方米,救生员每天要走6400米.
故答案为:2700;6400.
【分析】运用长方体的体积公式求出长是50米宽是30米高是2米与20厘米差的体积即可,利用长方形的周长公式,即可求出40圈的长度就是救生员小王每天需要走的距离.
四、解答题
13.【答案】 12.56÷3.14÷2
=4÷2
=2(米)
×3.14×22×1.2
=×3.14×4×1.2
=3.14×4×0.4
=12.56×0.4
=5.024(立方米)
5.024÷160=0.0314(米)=3.14(厘米)
答:沙子厚3.14厘米。
【解析】【分析】已知圆锥的底面周长,可以先求出圆锥的底面半径,用公式:C÷π÷2=r,然后用公式:V=πr2h,求出这堆沙的体积,然后用这堆沙的体积÷铺路的底面积=铺的沙子厚度,最后把米化成厘米,乘进率100,据此列式解答。
14.【答案】 解:72÷4-6-5
=18-5-6
=7(厘米)
6×5×7=210(立方厘米)
答:它的体积是210立方厘米。

【解析】【分析】用长方体棱长和除以4求出一组长宽高的和,然后减去长,再减去宽即可求出高。用长乘宽乘高即可求出体积。
五、应用题
15.【答案】 解:85.6÷(2×2)=21.4(dm)
【解析】【解答】解:85.6÷(2×2)
=85.6÷4
=21.4(dm)
答:这块木料的长是21.4分米。
【分析】根据长方体的体积公式,用木料的体积除以截面的面积即可求出这块木料的长度。