中小学教育资源及组卷应用平台
17.2
勾股定理的逆定理
同步练习
参考答案与试题解析
一.选择题(共8小题)
1.下列各组数中,是勾股数的是( )
A.12,15,18
B.12,35,36
C.2,3,4
D.5,12,13
解:A、122+152≠182,不是勾股数,故此选项不合题意;
B、122+352≠362,不是勾股数,故此选项不合题意;
C、22+32≠42,不是勾股数,故此选项不合题意;
D、52+122=132,都是正整数,是勾股数,故此选项符合题意;
故选:D.
2.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个结,然后将绳子底端拉到离旗杆底端5米的地面某处,发现此时绳子底端距离打结处约1米,则旗杆的高度是( )
A.12
B.13
C.15
D.24
解:如图,
设旗杆的高度为xm,则AC=xm,AB=(x+1)m,BC=5m,
在Rt△ABC中,52+x2=(x+1)2,解得x=12,
答:旗杆的高度是12m.
故选:A.
3.为了打造“绿洲”,计划在市内一块如图所示的三角形空地上种植某种草皮,已知AB=10米,BC=15米,∠B=150°,这种草皮每平方米售价2a元,则购买这种草皮需( )元.
A.75a
B.50a
C.a
D.150a
解:如图,作BA边的高CD,设与AB的延长线交于点D,
∵∠ABC=150°,
∴∠DBC=30°,
∵CD⊥BD,BC=15米,
∴CD=7.5米,
∵AB=10米,
∴S△ABC=AB×CD=×10×7.5=37.5(平方米),
∵每平方米售价2a元,
∴购买这种草皮至少为37.5×2a=75a(元),
故选:A.
4.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法错误的是( )
A.如果∠C﹣∠B=∠A,则△ABC是直角三角形
B.如果c2=b2﹣a2,则△ABC是直角三角形
C.如果∠A:∠B:∠C=1:2:3,则△ABC是直角三角形
D.如果a2+b2≠c2,则△ABC不是直角三角形
解:A、∠C﹣∠B=∠A,即∠A+∠B=∠C,又∵∠A+∠B+∠C=180°,则∠C=90°,那么△ABC是直角三角形,说法正确;
B、c2=b2﹣a2,即a2+c2=b2,那么△ABC是直角三角形且∠B=90,说法正确;
C、∠A:∠B:∠C=1:2:3,又∵∠A+∠B+∠C=180°,则∠C=90°,则△ABC是直角三角形,说法正确;
D、a=3,b=5,c=4,32+52≠42,但是32+42=52,则△ABC可能是直角三角形,故原来说法错误.
故选:D.
5.一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为( )
A.2m
B.2.5cm
C.2.25m
D.3m
解:在直角△ABC中,AC=1.5cm.AB﹣BC=0.5m.
设水池BC=xm,则AB=(0.5+x)m.
根据勾股定理得出:
∵AC2+BC2=AB2
∴1.52+x2=(x+0.5)2
解得:x=2.
故选:A.
6.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为( )
A.60海里
B.45海里
C.20海里
D.30海里
解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
故AB=2AP=60(海里),
则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)
故选:D.
7.在△ABC中,AB=AC=5,BC=6,M是BC的中点,MN⊥AC于点N,则MN=( )
A.
B.
C.6
D.11
解:连接AM,
∵AB=AC,点M为BC中点,
∴AM⊥CM(三线合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,
∴根据勾股定理得:AM===4,
又S△AMC=MN?AC=AM?MC,
∴MN==.
故选:A.
8.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为( )
A.3<h<4
B.3≤h≤4
C.2≤h≤4
D.h=4
解:①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16﹣12=4(cm);
②露出部分最短时与底面对角线和高正好组成直角三角形,
底面对角线直径为5cm,高为12cm,
由勾股定理可得杯里面管长为=13cm,则露在杯口外的长度最长为16﹣13=3cm;
则可得露在杯口外的长度在3cm和4cm范围变化.
故选:B.
二.填空题(共4小题)
9.如图,正方形网格中,每一小格的边长为1.网格内有△PAB,则∠PAB+∠PBA的度数是 45° .
解:
延长AP到C,使AP=PC,连接BC,
∵AP=PC==,
同理BC=,
∵BP==,
∴PC=BC,PC2+BC2=PB2,
∴△PCB是等腰直角三角形,
∴∠CPB=∠CBP=45°,
∴∠PAB+∠PBA=∠CPB=45°,
故答案为:45°.
10.边长为6,8,10的△ABC内有一点P到三边的距离均为m,则m的值为 2 .
解:∵62+82=102,
∴△ABC是直角三角形,
∵△ABC内有一点P到三边的距离均为m,
∴,
∴m=2,
故答案为:2.
11.下列四组数:①0.6,0.8,1;②5,12,13;
③8,15,17;④4,5,6.其中是勾股数的组数为 2 .
解:①0.62+0.82=12,不是整数,不是勾股数;
②52+122=132,是勾股数;
③82+152=172,是勾股数;
④42+52≠62,不是勾股数;
其中是勾股数的组为2.
故答案为:2.
12.某会展中心在会展期间准备将高5m、长13m、宽2m的楼道铺上地毯,已知地毯每平方米20元,请你帮助计算一下,铺完这个楼道至少需要 680 元.
解:由勾股定理得AB===12(m),
则地毯总长为12+5=17(m),
则地毯的总面积为17×2=34(平方米),
所以铺完这个楼道至少需要34×20=680(元).
故答案为:680.
三.解答题(共4小题)
13.如图,正方形网格中的△ABC,若小方格边长为1,请证明△ABC为直角三角形,并求出其面积.
解:∵AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,
∴AB2+AC2=BC2,
∴△ABC是直角三角形,
∴△ABC的面积=.
14.已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2.求整式B.
联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图,填写下表中B的值;
直角三角形三边
n2﹣1
2n
B
勾股数组Ⅰ
15
8
17
勾股数组Ⅱ
35
12
37
解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,
∵A=B2,B>0,
∴B=n2+1,
当2n=8时,n=4,∴n2﹣1=42﹣1=15,n2+1=42+1=17;
当n2﹣1=35时,n=±6(负值舍去),∴2n=2×6=12,n2+1=37.
直角三角形三边
n2﹣1
2n
B
勾股数组Ⅰ
15
8
17
勾股数组Ⅱ
35
12
37
故答案为:15,17;12,37.
15.如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.
(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?
(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?
解:(1)根据勾股定理:
所以梯子距离地面的高度为:AO=(米);
(2)梯子下滑了0.5米即梯子距离地面的高度为OA′=(2﹣0.5)=1.5(米),
根据勾股定理:OB′==2(米),
所以当梯子的顶端下滑0.5米时,梯子的底端水平后移了2﹣1.5=0.5(米),
答:当梯子的顶端下滑0.5米时,梯子的底端水平后移了0.5米.
16.拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.
(1)学校C会受噪声影响吗?为什么?
(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?
解:(1)学校C会受噪声影响.
理由:如图,过点C作CD⊥AB于D,
∵AC=150m,BC=200m,AB=250m,
∴AC2+BC2=AB2.
∴△ABC是直角三角形.
∴AC×BC=CD×AB,
∴150×200=250×CD,
∴CD==120(m),
∵拖拉机周围130m以内为受噪声影响区域域,
∴学校C会受噪声影响.
(2)当EC=130m,FC=130m时,正好影响C学校,
∵ED=(m),
∴EF=100(m),
∵拖拉机的行驶速度为每分钟50米,
∴100÷50=2(分钟),
即拖拉机噪声影响该学校持续的时间有2分钟.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
17.2
勾股定理的逆定理
同步练习
一.选择题(共8小题)
1.下列各组数中,是勾股数的是( )
A.12,15,18
B.12,35,36
C.2,3,4
D.5,12,13
2.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个结,然后将绳子底端拉到离旗杆底端5米的地面某处,发现此时绳子底端距离打结处约1米,则旗杆的高度是( )
A.12
B.13
C.15
D.24
3.为了打造“绿洲”,计划在市内一块如图所示的三角形空地上种植某种草皮,已知AB=10米,BC=15米,∠B=150°,这种草皮每平方米售价2a元,则购买这种草皮需( )元.
A.75a
B.50a
C.a
D.150a
4.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列说法错误的是( )
A.如果∠C﹣∠B=∠A,则△ABC是直角三角形
B.如果c2=b2﹣a2,则△ABC是直角三角形
C.如果∠A:∠B:∠C=1:2:3,则△ABC是直角三角形
D.如果a2+b2≠c2,则△ABC不是直角三角形
5.一根竹竿插到水池中离岸边1.5m远的水底,竹竿高出水面0.5m,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为( )
A.2m
B.2.5cm
C.2.25m
D.3m
6.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为( )
A.60海里
B.45海里
C.20海里
D.30海里
7.在△ABC中,AB=AC=5,BC=6,M是BC的中点,MN⊥AC于点N,则MN=( )
A.
B.
C.6
D.11
8.如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为( )
A.3<h<4
B.3≤h≤4
C.2≤h≤4
D.h=4
二.填空题(共4小题)
9.如图,正方形网格中,每一小格的边长为1.网格内有△PAB,则∠PAB+∠PBA的度数是
.
10.边长为6,8,10的△ABC内有一点P到三边的距离均为m,则m的值为
.
11.下列四组数:①0.6,0.8,1;②5,12,13;
③8,15,17;④4,5,6.其中是勾股数的组数为
.
12.某会展中心在会展期间准备将高5m、长13m、宽2m的楼道铺上地毯,已知地毯每平方米20元,请你帮助计算一下,铺完这个楼道至少需要
元.
三.解答题(共4小题)
13.如图,正方形网格中的△ABC,若小方格边长为1,请证明△ABC为直角三角形,并求出其面积.
14.已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2.求整式B.
联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图,填写下表中B的值;
直角三角形三边
n2﹣1
2n
B
勾股数组Ⅰ
8
勾股数组Ⅱ
35
15.如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.
(1)若梯子底端离墙角的距离OB为1.5米,求这个梯子的顶端A距地面有多高?
(2)在(1)的条件下,如果梯子的顶端A下滑0.5米到点A',那么梯子的底端B在水平方向滑动的距离BB'为多少米?
16.拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.
(1)学校C会受噪声影响吗?为什么?
(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
21世纪教育网(www.21cnjy.com)