人教版数学七年级下册 5.3 平行线的性质和判定及其综合运用 课件(25张)

文档属性

名称 人教版数学七年级下册 5.3 平行线的性质和判定及其综合运用 课件(25张)
格式 pptx
文件大小 2.5MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-03-08 11:18:14

图片预览

文档简介

5.2.2 平行线的性质和判定及其综合运用
人教版数学七年级下册
第五章 相交线与平行线
2. 掌握垂直于同一条直线的两条直线互相平行。
2
1. 进一步掌握平行线的判定方法,并会运用平行线的判定解决问题;(重点)
1
枕木
铁轨
在铺设铁轨时,两条直轨必须是互相平行的。
思考:如何确定两条直轨是否平行?
文字叙述
符号语言
图形
相等
两直线平行
∴a∥b
相等
两直线平行

∴a∥b
互补
两直线平行

∴a∥b
同位角
内错角
同旁内角
∵∠1=∠2
∠3=∠2
∵∠2+∠4=180°
a
b
c
1
2
3
4
1.平行线的判定
回顾与思考
方法4:如图1,若a∥b,b∥c,则a∥c.
( )
方法5:如图2,若a⊥b,a⊥c,则b∥c.
( )
平行于同一条直线的两条直线平行
垂直于同一条直线的两条直线平行
2.平行线的其它判定方法
a
b
c
图1
a
b
c
图2
回顾与思考
3.平行线的性质
回顾与思考
{5C22544A-7EE6-4342-B048-85BDC9FD1C3A}
图形
已知
结果
依据
同位角
内错角
同旁内角
1
2
2
3
2
4






a
b
a
b
a
b
c
c
c
a//b
两直线平行
同位角相等
a//b
两直线平行
内错角相等
同旁内角互补
a//b
两直线平行
∠1=∠2
∠3=∠2
∠2+∠4
=180 °
① ∵ ∠1 =_____(已知)
∴ AB∥CE
② ∵ ∠1 +_____=180o(已知)
∴ CD∥BF
③ ∵ ∠1 +∠5 =180o(已知)
∴ _____∥_____.
AB
CE
∠2
④ ∵ ∠4 +_____=180o(已知)
∴ CE∥AB
∠3
∠3
例1 如图:
1
3
5
4
2
C
F
E
A
D
B
(内错角相等,两直线平行)
(同旁内角互补,两直线平行)
(同旁内角互补,两直线平行)
(同旁内角互补,两直线平行)
核心知识点一
平行线的判定的综合运用
例2 已知∠3=45 °,∠1与∠2互余,试说明AB//CD.
解:由于∠1与∠2是对顶角,
∴∠1=∠2.
又∵∠1+∠2=90°(已知),
∴∠1=∠2=45°.
∵ ∠3=45°(已知),
∴∠ 2=∠3.
∴ AB∥CD(内错角相等,两直线平行).
1
2
3
A
B
C
D
解:过点E作EF//AB.
∵AB//CD,EF//AB(已知),
∴ // (平行于同一直线的两直线平行).
∴∠A+∠ =180o,∠C+∠ =180o(两直线平行,同旁内角互补).
又∵∠A=100°,∠C=110°(已知),
∴∠ = °, ∠ = °(等量代换).
∴∠AEC=∠1+∠2= °+ ° = °.
例3 如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数.
E
A
B
C
D
2
1
CD
EF
1
2
1
2
80
80
70
70
150
F
核心知识点二
在同一平面内,垂直于同一条直线的两条直线平行
思考:在同一平面内,两条直线垂直于同一条直线,
这两条直线平行吗?为什么?
a
b
c
b⊥a,c⊥a
b∥c
?
合作探究
猜想:垂直于同一条直线的两条直线平行。
在同一平面内,b⊥a,c⊥a,试说明:b∥c.
a
b
c
1
2
∵b⊥a ,c ⊥a (已知)
∴b∥c
(同位角相等,两直线平行)
∴∠1= ∠2 = 90°
(垂直的定义)
解法1:如图
验证猜想
∵ b⊥a,c⊥a(已知)
∴∠1=∠2=90°(垂直定义)
∴b∥c(内错角相等,两直线平行)
a
b
c
1
2
解法2:如图
在同一平面内,b⊥a,c⊥a,试说明:b∥c.
验证猜想
∵ b⊥a,c⊥a(已知)
∴∠1=∠2=90°(垂直定义)
∴ ∠1+∠2=180°
∴b∥c(同旁内角互补,两直线平行)
a
b
c
1
2
解法3:如图
在同一平面内,b⊥a,c⊥a,试说明:b∥c.
验证猜想
同一平面内,垂直于同一条直线
的两条直线平行。
几何语言:
∵ b⊥a,c⊥a(已知)
∴b∥c(同一平面内,垂直于同一条直线的两条直线平行)
a
b
c
1
2
归纳总结
解:方法1:测出∠3=90°,
理由是同位角相等,两直线平行.
方法2:测出∠2=90°,
理由是同旁内角互补,两直线平行.
方法3:测出∠5=90°,
理由是内错角相等,两直线平行.
方法4:测出∠2,∠3,∠4,∠5中任意一个角为90°,
理由是同一平面内,垂直于同一直线的两直线平行.
例4 如图,为了说明示意图中的平安大街与长安街是互相平行的,在地图上量得∠1=90°,你能通过度量图中已标出的其他的角来验证这个结论吗?说出你的理由。
两条直线平行的判断方法:
3、同位角相等,两直线平行.
4、内错角相等,两直线平行.
5、同旁内角互补,两直线平行.
1、平行线的定义
在同一平面内,不相交的两条直线叫做平行线
2、如果两条直线都垂直于第三条直线,那么这两条直线互相平行.
1.填空:如图,
(1)∠1= 时,AB∥CD.
(2)∠3= 时,AD∥BC.
D
1
2
3
4
5
A
B
C
F
E
∠2
∠5
或∠4
2.直线a,b与直线c相交,给出下列条件:
①∠1= ∠2; ②∠3= ∠6; 
③∠4+∠7=180o; ④∠3+ ∠5=180°,
其中能判断a//b的是( )
A. ①②③④
B .①③④
C. ①③
D. ④
1
2
3
4
5
6
7
8
c
a
b
B
解:过点C作CF∥AB,
则 _______( )
又∵AB∥DE,AB∥CF,
∴____________( )
∴∠E=∠____(          )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
3.已知AB∥DE,试问∠B、∠E、∠BCE有什么关系.
请完成填空:
CF∥DE
平行于同一直线的两条直线互相平行
2
两直线平行,内错角相等
∠B=∠1
两直线平行,内错角相等
A
B
C
D
E
1
2
F
有一块木板,身边只有直尺和量角器,我们怎样才能知道它上下边缘是否平行?
思维拓展
1
2
方案1:
40°
40°
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
思维拓展
40°
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
1
2
40°
方案2:
思维拓展
140°
40°
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
1
2
方案3:
思维拓展
谢谢观看