6.1分类加法计数原理与分步乘法计数原理(2) 课件(共33张PPT)+教案

文档属性

名称 6.1分类加法计数原理与分步乘法计数原理(2) 课件(共33张PPT)+教案
格式 zip
文件大小 3.6MB
资源类型 试卷
版本资源 人教A版(2019)
科目 数学
更新时间 2021-03-11 11:22:06

文档简介

中小学教育资源及组卷应用平台
6.1分类加法计数原理与分步乘法计数原理(2)教学设计
课题
分类加法计数原理与分步乘法计数原理
单元
第六单元
学科
数学
年级
高二
学习目标
理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的应用问题.
重点
分类加法计数原理;分步乘法计数原理.
难点
分类加法计数原理与分步乘法计数原理的计算.
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
新知导入:情境一:班上有25名男生,20名女生,要从中选择1人担任班长,一共有多少种不同的选法?答:可以从25名男生中选择一位担任班长,共有25种不同的选法;也可以从20名女生中选择一位担任班长,共有20种不同的选法。所以共有25+20=45种不同的选法。情境二:要完成一项工作,有两种方法可以完成,有5个人只会用第一种方法,另外4个人只会用第二种方法,从这9个人中选择一人来完成这项工作,有多少种不同的选法?答:会使用第一种方法的有5个人,所以可以有5种选法;会使用第二种方法的有4个人,可以有4种选法。所以,要完成该项工作,总共可以有5+4=9种不同的选法。思考:上述两个问题有什么共同特征?答:要完成上述两件事情(选出班长、完成一项工作),都有不同的方案(每种方案包含多种方法)可以独立完成需求.情境三:新学期开学,甲、乙、丙3位同学从5个宿舍中挑选一个入住(可以选择相同的宿舍),可以有多少种不同的入住方法?答:甲同学可以从5个宿舍中挑选一件入住,有5种方法;乙同学也可以从5个宿舍中挑选一件入住,有5种方法;丙同学也可以从5个宿舍中挑选一件入住,有5种方法。共有5
x
5
x
5
=
125种不同的方法情境四:班上有25名男生,20名女生,要分别从男生和女生中各选择1名担任数学课代表,一共有多少种不同的选法?答:从25名男生中选择1位担任数学课代表,有25种不同的选法;从20名女生中选择1位担任数学课代表,有20种不同的选法.故共有25
x
20
=
500种不同的选法。思考:上述两个问题有什么共同特征?答:要完成上述两件事情(选宿舍、选课代表),要将每一位学生都安排好宿舍或者要从男生和女生种都选择一位数学课代表,那么这件事情才算完成
学生思考问题,引出本节新课内容。
设置问题情境,激发学生学习兴趣,并引出本节新课。
讲授新课
新知讲解(一):分类加法计数原理完成一件事,有n类办法.
在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,则完成这件事共有:N=
m1+m2+…
+
mn种不同的方法说明:每类中的任意一种方法都能独立完成这件事情。新知讲解(二):分步乘法计数原理完成一件事,有n个步骤.
在第1步中有m1种不同的方法,在第2步中有m2种不同的方法,……,在第n步中有mn种不同的方法,则完成这件事共有:N=
m1
x
m2
x…
x
mn种不同的方法说明:只有各个步骤都完成才算做完这件事情例题讲解:例4
要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?答:从3幅不同的画中选出2幅分别挂在左、右两边墙上,要分两步完成:(1)从3幅画中选出一幅挂在左边墙上,有3种选法(2)从剩下的2幅画中选出1幅挂在右边墙上,有2中选法。根据分步乘法原理,共有3x2=6种不同的挂法。例5
给程序模块命名,需要用3个字符,其中首个字符要求用字母A~G或U~Z,后两个要求用数字1~9,问最多可以给多少个程序命名?答:首字符共有7+6=13种不同的选法,中间字符和末位字符各有9种不同的选法,根据分步计数原理,最多可以有13×9×9=1053种不同的选法。例6
电子元件很容易实现电路的通与断、电位的高与底等两种状态,而这也是最容易控制的两种状态。因此计算机内部就采用了每一位只有0或1两种数字的计数法,即二进制,为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成(1)一个字节(8位)最多可以表示多少个不同的字符?答:
1个字节共有8位,每位上有2种选择,根据分步乘法原理,一个字节最多可以表示不同字符的个数是2
x
2
x
2
x
2
x
2
x
2
x
2
x
2=28=256(2)计算机汉字国标码(GB码)包含了6763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?答:由(1)知,1个字节所能表示的不同字符不够6763个,考虑2个字节能够表示多少个字符。前一个字节有256种不同的表示方法,后1个字节也有256种表示方法,根据分步乘法计数原理,2个字节可以表示不同的字符个数为:256
x
256=65536,该值大于汉字国标码包含的汉字个数6763.因此要对这些汉字进行编码,每个汉字至少要用2个字节表示。例7
计算机编程人员在编写好程序以后要对程序进行测试。程序员需要知道到底有多少条执行路(即程序从开始到结束的线),以便知道需要提供多少个测试数据。一般的,一个程序模块又许多子模块组成,它的一个具有许多执行路径的程序模块。这个程序模块有多少条执行路径?(2)为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,以减少测试次数吗?答:(1)由分类加法计数原理,子模块1、子模块2、子模块3中的子路径条数共有18+45+28=91条;子模块4、子模块5中的子路径条数共有38+43=81条;由分步乘法计数原理,整个模块执行路径条数为:91
x
81
=
7371条。(2)在实际测试中,程序员总是把每一个子模块看成一个黑箱,即通过只考察是否执行了正确的子模块的方式来测试整个模块。这样,他可以先分别单独测试5个模块,以考察每个子模块的工作是否正常。总共需要的测试次数为18+45+28+38+43=172,再测试各个模块之间的信息交流是否正常,需要测试的次数为:3
x
2
=
6。如果每个子模块都正常工作,并且各个子模块之间的信息交流也正常,那么整个程序模块就正常。这样,测试整个模块的次数就变为
172+6=178(次)例8
通常,我国民用汽车号牌的编码由两部分组成:第一部分为由汉字表示的省、自治区、直辖市简称和用英文字母表示的发牌机关代码,第二部分为由阿拉伯数字和英文字母组成的序号。其中,序号的编码规则为:①由10个阿拉伯数字和除O、I之外的24个英文字母组成;②最多只能有两个英文字母。如果某地级市发牌机关采用5位序号编码,那么这个发牌机关最多能发放多少张汽车号牌?答:由号牌编号的组成可知,这个发牌机关所能发放的最多号牌数就是序号的个数。根据序号编码规则,5位序号可以分为三类:没有字母,有一个字母,有两个字母。(1)当没有字母时,序号的每一位都是数字。确定一个序号可以分五个步骤,每一步都可以从10个数字中选1个,各有10种选法。根据分步乘法计数原理,这类号牌张数为:10
x
10
x
10
x
10
x
10
=
10000;(2)当有一个字母时,这个字母可以分别在序号的第一位、第二位、第三位、第四位或第五位,这类序号可以分为5个子类;当第一位是字母时,分5个步骤确定一个序号中的字母和数字:第一步,从24个字母中选一个放在第一位,有24种选法;第2~5步都是从10个数字中选1个放在相应的位置,各有10种选法。根据分步乘法计数原理,号牌张数为:24
x
10
x
10
x
10
x10
=
240000。同样,其余四个子类号牌也各有240000张。根据分类加法计数原理,这类号牌张数一共有:240000
+
240000
+
240000
+
240000
+
240000
=
1200000;(3)当有2个字母时,根据这2个字母在序号中的位置,可以将这类序号分为十个子类:第一位和第二位,第一位和第三位,第一位和第四位,第一位和第五位;第二位和第三位,第二位和第四位,第二位和第五位;第三位和第四位,第二位和第五位;第四位和第五位。当第1位和第2位是字母时,分五个步骤确定一个序号中的字母和数字:第1~2步都是从24个字母中选1个分别放在第1位、第2位,各有24种选法;第3~5步都是从10个数字中选1个放在相应的位置,各有10种选法,根据分步乘法计数原理,号牌张数为:
24
x
24
x
10
x
10
x
10
=576000;同样,其余九个子类号牌也各有576000张。则这类号牌张数一共有:576000x10=5760000张。综合(1)(2)(3),根据分类加法计数原理,这个发牌机关最多能发放的汽车号牌数为:
100000
+
1200000
+
5760000
=
7060000课堂练习:1、用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( B )A.243
B.252
C.261
D.2792、如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( A )A.72种
B.48种
C.24种
D.12种3、如图所示,在连结正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有
40个(用数字作答).拓展提高:4、某班一天上午有4节课,每节都需要安排1名教师去上课,现从A,B,C,D,E,F这6名教师中安排4人分别上一节课,第一节课只能从A,B两人中安排一个,第四节课只能从A,C两人中安排一人,则不同的安排方案共有__36__种5、工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是____60____.6、将编号
的小球放入编号为
盒子中,要求不允许有空盒子,且球与盒子的编号不能相同,则不同的放球方法有(
C

A.
6种
B.
9种
C.
12种
D.
18种链接高考:7、(2016
全国Ⅱ卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( B )A.24
B.18
C.12
D.98、从0,2中选一个数字.从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为(
B
)
A.24
B.18
C.12
D.6
学生根据不同的情境问题,探究分类加法计数原理与分步乘法计数原理.利用例题引导学生掌握并灵活运用分类加法计数原理.通过课堂练习,检验学生对本节课知识点的掌握程度,同时加深学生对本节课知识点的掌握及运用.
利用不同的情境问题,探究分类加法计数原理与分步乘法计数原理的计算方法,培养学生探索的精神.加深学生对基础知识的掌握,并能够灵活运用基础知识解决具体问题.通过练习,巩固基础知识,发散学生思维,培养学生思维的严谨性和对数学的探索精神.
课堂小结
分类加法计数原理分步乘法计数原理
学生回顾本节课知识点,教师补充。
让学生掌握本节课知识点,并能够灵活运用。
板书
§6.1
分类加法计数原理与分步乘法计数原理一、新知导入
三、例题讲解二、新知讲解
四、课堂练习1.分类加法计数原理
五、拓展提高2.分步乘法计数原理
六、课堂总结
七、作业布置
21世纪教育网
www.21cnjy.com
精品试卷·第
2

(共
2
页)
HYPERLINK
"http://www.21cnjy.com/"
21世纪教育网(www.21cnjy.com)(共33张PPT)
6.1
分类加法计数原理与分步乘
法计数原理(2)
人教A版(2019)
选择性必修第三册
新知导入
班上有25名男生,20名女生,要从中选择1人担任班长,
一共有多少种不同的选法?
分析:
可以从25名男生中选择一位担任班长,共有25种不同的选法;也可以从20名女生中选择一位担任班长,共有20种不同的选法.所以共有25+20=45种不同的选法.
新知导入
要完成一项工作,有两种方法可以完成,有5个人只会用第一种方法,另外4个人只会用第二种方法,从这9个人中选择一人来完成这项工作,有多少种不同的选法?
分析:会使用第一种方法的有5个人,所以可以有5种选法;会使用第二种方法的有4个人,可以有4种选法.所以,要完成该项工作,总共可以有5+4=9种不同的选法.
合作探究
思考:上述两个问题有什么共同特征?
回答:要完成上述两件事情(选出班长、完成一项工作),都有不同的方案(每种方案包含多种方法)可以独立完成需求.
新知讲解
完成一件事,有n类办法.
在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,则完成这件事共有
N=
m1+m2+…
+
mn种不同的方法
分类加法计数原理
每类中的任意一种方法都能独立完成这件事情.
新知导入
新学期开学,甲、乙、丙3位同学从5个宿舍中挑选一个入住(可以选择相同的宿舍),可以有多少种不同的入住方法?
分析:
甲同学可以从5个宿舍中挑选一个入住,有5种方法;乙同学也可以从5个宿舍中挑选一个入住,有5种方法;丙同学也可以从5个宿舍中挑选一个入住,有5种方法.
共有5
x
5
x
5
=
125种不同的方法.
新知导入
班上有25名男生,20名女生,要分别从男生和女生中各选择1名担任数学课代表,一共有多少种不同的选法?
分析:
从25名男生中选择1名担任数学课代表,有25种不同的选法;从20名女生中选择1名担任数学课代表,有20种不同的选法.故共有25
x
20
=
500种不同的选法.
合作探究
思考:上述两个问题有什么共同特征?
回答:要完成上述两件事情(选宿舍、选课代表),要将每一位学生都安排好宿舍或者要从男生和女生种都选择一名数学课代表,那么这件事情才算完成.
新知讲解
完成一件事,有n个步骤.
在第1步中有m1种不同的方法,在第2步中有m2种不同的方法,…,在第n步中有mn种不同的方法,则完成这件事共有
N=
m1
x
m2
x…
x
mn种不同的方法.
分步乘法计数原理
 只有各个步骤都完成才算做完这件事情.
例题讲解
例4
要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,共有多少种不同的挂法?
解:从3幅不同的画中选出2幅分别挂在左、右两边墙上,要分两步完成:
1、从3幅画中选出1幅挂在左边墙上,有3种选法;
2、从剩下的2幅画中选出1幅挂在右边墙上,有2种选法.
根据分步乘法计数原理,共有3x2=6种不同的挂法.
例题讲解
例5
给程序模块命名,需要用3个字符,其中首个字符要求用字母A~G或U~Z,后两个字符要求用数字1~9,最多可以给多少个程序模块命名?
分析:要给一个程序模块命名,可以分三个步骤:第一步,选首字符;第二步,先中间字符;第三步,选末位字符.
解:由分类加法计数原理,首字符共有7+6=13种不同的选法.
即最多可以给1053个程序模块命名.
 后两个字符从1~9中选,因为数字不能重复,所以不同选法的种数都为9.
 根据分步乘法计数原理,不同名称的个数是13×9×9=1053,
例题讲解
例6
电子元件很容易实现电路的通与断、电位的高与底等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用1个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.
(1)1个字节(8位)最多可以表示多少个不同的字符?
(2)计算机汉字国标码(GB码)包含了6763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?
例题讲解
分析:(1)由于每个字节有8个二进制位,每一位上的值都有0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解;(2)只要计算出多少个字节所能表示的不同字符不少于6763个即可.
第1位
第2位
第3位
第8位
2种
2种
2种
2种


解:(1)用如右图表示1个字节.
1个字节共有8位,每位上有2种选择,根据分步乘法计数原理,1个字节最多可以表示不同字符的个数是2x2x2x2x2x2x2x2=28=256
例题讲解
(2)由(1)知,1个字节所能表示的不同字符不够6763个,我们考虑2个字节能够表示多少个字符.前1个字节有256种不同的表示方法,后1个字节也有256种表示方法,根据分步乘法计数原理,2个字节可以表示不同字符的个数为
256
x
256=65536.
该值大于汉字国标码包含的汉字个数6763.因此要对这些汉字进行编码,每个汉字至少要用2个字节表示.
例题讲解
例7
计算机编程人员在编写好程序以后需要对程序进行测试.程序员需要知道到底有多少条执行路(即程序从开始到结束的路线),以便知道需要提供多少个测试数据.一般地,一个程序模块由许多子模块组成,如图,这是一个具有许多执行路径的程序模块。
(1)这个程序模块有多少条执行路径?
(2)为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,以减少测试次数吗?
开始
子模块1
18条执行路径
子模块3
28条执行路径
子模块2
45条执行路径
子模块5
43条执行路径
子模块4
38条执行路径
结束
A
例题讲解
开始
子模块1
18条执行路径
子模块3
28条执行路径
子模块2
45条执行路径
子模块5
43条执行路径
子模块4
38条执行路径
结束
A
分析:整个模块的任意一条执行路径都分两步完成:
第1步是从开始执行到A点;
第2步是从A点执行到结束.而第1步可由子模块1、子模块2、子模块3中任何一个来完成;第2步可由子模块4、子模块5中任何一个来完成.因此,分析一条指令在整个模块的执行路径需要用到两个计数原理.
例题讲解
开始
子模块1
18条执行路径
子模块3
28条执行路径
子模块2
45条执行路径
子模块5
43条执行路径
子模块4
38条执行路径
结束
A
解:(1)由分类加法计数原理,子模块1、子模块2、子模块3中的子路径条数共为18+45+28=91条;
子模块4、子模块5中的子路径条数共为38+43=81条;
由分步乘法计数原理,整个模块的执行路径条数共为
91
x
81
=
7371条
例题讲解
(2)在实际测试中,程序员总是把每一个子模块看成一个黑箱,即通过只考察
是否执行了正确的子模块的方式来测试整个模块.这样,他可以先分别单独测试
5个模块,以考察每个子模块的工作是否正常.总共需要的测试次数为18+45+28+38+43=172.
再测试各个模块之间的信息交流是否正常,需要测试的次数为:3
x
2
=
6.
如果每个子模块都正常工作,并且各个子模块之间的信息交流也正常,
那么整个程序模块就工作正常.
这样,测试整个模块的次数就变为
172+6=178(次)
例题讲解
例8
通常,我国民用汽车号牌的编码由两部分组成:第一部分为由汉字表示的省、自治区、直辖市简称和用英文字母表示的发牌机关代码,第二部分为由阿拉伯数字和英文字母组成的序号.
其中,序号的编码规则为:
(1)由10个阿拉伯数字和除O、I之外的24个英文字母组成;
(2)最多只能有2个英文字母.
如果某地级市发牌机关采用5位序号编码,那么这个发牌机关最多能发放多少张汽车号牌?
例题讲解
解:由号牌编号的组成可知,这个发牌机关所能发放的最多号牌数就是序号的个数.根据序号编码规则,5位序号可以分为三类:没有字母,有1个字母,有2个字母.
(1)当没有字母时,序号的每一位都是数字.确定一个序号可以分5个步骤,每一步都可以从10个数字中选1个,各有10种选法.根据分步乘法计数原理,这类号牌张数为:10
x
10
x
10
x
10
x
10
=
10000.
例题讲解
(2)当有1个字母时,这个字母可以分别在序号的第1位、第2位、第3位、第4位或第5位,这类序号可以分为五个子类.
当第1位是字母时,分5个步骤确定一个序号中的字母和数字:第1步,从24个字母中选1个放在第1位,有24种选法;第2~5步都是从10个数字中选1个放在相应的位置,各有10种选法.根据分步乘法计数原理,号牌张数为
24
x
10
x
10
x
10
x10
=
240000.
同样,其余四个子类号牌也各有240000张.
根据分类加法计数原理,这类号牌张数一共为
240000
+
240000
+
240000
+
240000
+
240000
=
1200000.
例题讲解
(3)当有2个字母时,根据这2个字母在序号中的位置,可以将这类序号分为十个子类:第1位和第2位,第1位和第3位,第1位和第4位,第1位和第5位;第2位和第3位,第2位和第4位,第2位和第5位;第3位和第4位,第3位和第5位;第4位和第5位。
当第1位和第2位是字母时,分5个步骤确定一个序号中的字母和数字:第1~2步都是从24个字母中选1个分别放在第1位、第2位,各有24种选法;第3~5步都是从10个数字中选1个放在相应的位置,各有10种选法,根据分步乘法计数原理,号牌张数为
24
x
24
x
10
x
10
x
10
=576000.
同样,其余九个子类号牌也各有576000张.则这类号牌张数一共为576000x10=5760000张.
例题讲解
综合(1)(2)(3),根据分类加法计数原理,这个发牌机关最多能发放的汽车号牌张数为
100000
+
1200000
+
5760000
=
7060000
课堂练习
1.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为(  )
A.243
B.252
C.261
D.279
B
2.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有(  )
A.72种
B.48种
C.24种
D.12种
A
3.如图所示,在连结正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).
40
拓展提高
4.某班一天上午有4节课,每节都需要安排1名教师去上课,现从A,B,C,D,E,F这6名教师中安排4人分别上一节课,第一节课只能从A,B两人中安排一个,第四节课只能从A,C两人中安排一人,则不同的安排方案共有___
_种.
36
5.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.
60
拓展提高
6.将编号1,2,3,4的小球放入编号为1,2,3的盒子中,要求不允许有空盒子,且球与盒子的编号不能相同,则不同的放球方法有(

A.
6种
B.
9种
C.
12种
D.
18种
C
链接高考
7.(2016全国Ⅱ卷)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(  )
B
A.24
B.18
C.12
D.9
连接高考
8.从0,2中选一个数字.从1,3,5中选两个数字,组成无重复数字的三位数.
其中奇数的个数为(
)
A.24
B.18
C.12
D.6
B
由于题目要求的是奇数,那么对此三位数可以分成两种情况:奇偶奇;偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,一种情况),共6种,因此总共12+6=18种情况.
课堂总结
2、分步乘法计数原理
1、分类加法计数原理
板书设计
6.1
分类加法计数原理与分步乘法计数原理
一、新知导入
二、新知讲解
1.分类加法计数原理
2.分步乘法计数原理
三、例题讲解
四、课堂练习
五、拓展提高
六、课堂总结
七、作业布置
作业布置
课本P11~P12
习题6.1
https://www.21cnjy.com/help/help_extract.php