第五章 曲线运动 章末复习与测试 (课件) - 2020-2021学年高一物理同步备课一体化资源(人教版必修2)

文档属性

名称 第五章 曲线运动 章末复习与测试 (课件) - 2020-2021学年高一物理同步备课一体化资源(人教版必修2)
格式 zip
文件大小 1.9MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2021-03-11 22:55:47

文档简介

(共38张PPT)
第五章
曲线运动
章末复习
自主预习
重点探究
课堂小结
随堂训练


2第五章
曲线运动
章末复习与测试
一、单选题
1.如图所示,以水平初速度m/s抛出物体,飞行一段时间后,落在倾角为30°的斜面上,此时速度方向与斜面夹角为60°,则物体在空中飞行的时间为(不计空气阻力,g取)(  )
A.1.5s
B.s
C.3s
D.s
【答案】D
【解析】小球打在倾角θ为30°的斜面上,速度方向与斜面夹角α为60°,有几何关系可知,速度与水平方向的夹角为30°,将该速度分解,则有

vy=v0tan30°=gt
所以
故选D。
2.下列关于运动和力的叙述中,正确的是(  )
A.做曲线运动的物体,其加速度方向一定是变化的
B.物体做圆周运动,所受的合力一定指向圆心
C.物体所受合力方向与运动方向相反,该物体一定做直线运动
D.物体运动的速率在增加,所受合力方向一定与运动方向相同
【答案】C
【解析】A.物体做曲线运动的条件是加速度与速度方向不在同一条直线上,加速度大小和方向不一定变化,比如平抛运动,加速度恒定不变,选项A错误;
B.匀速圆周运动的物体所受的合力一定指向圆心,变速圆周运动的物体所受的合力不一定指向圆心,选项B错误;
C.当物体所受合力与速度方向不在同一条直线上时,物体做曲线运动,当合力与速度方向在同一直线上时,物体做直线运动,所受合力方向不一定与运动方向相反,也可以相同,选项C正确;
D.物体运动的速度在增加,所受合力方向与运动方向不一定相同,可能所受合力方向与运动方向成锐角,选项D错误。
故选C。
3.如图所示,在高尔夫球场上,某人从高出水平地面h的坡顶以速度v0水平击出一球,球落在水平地面上的C点.已知斜坡AB与水平面的夹角为θ,不计空气阻力.则下列说法正确的是
A.若球落到斜坡上,其速度方向与水平方向的夹角为定值
B.若球落到斜坡上,其速度方向与水平方向的夹角不确定
C.AC的水平距离为
D.小球落在C点时的速度大小为
【答案】A
【解析】AB、若球落到斜面上,由平抛运动规律有,设速度与水平方向的夹角为,由平抛运动规律有,比较得=定值,故A正确,
B错误;
C、球从A运动到C做平抛运动,竖直方向有,水平方向有,故C错误;
D、根据动能定理有,解得,故D错误;
故选A.
4.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A的受力情况是(

A.绳的拉力大于A的重力
B.绳的拉力等于A的重力
C.绳的拉力小于A的重力
D.绳的拉力先大于A的重力,后变为小于重力
【答案】A
【解析】设和小车连接的绳子与水平面的夹角为θ,小车的速度为v,则这个速度分解为沿绳方向伸长的速度和垂直绳方向摆动的速度,根据平行四边形定则得绳伸长的速度为vcosθ,随着小车匀速向右运动,显然θ逐渐减小,绳伸长的速度越来越大,又知物体A的速度与绳伸长的速度大小一样,所以物体A向上做加速运动,则由牛顿第二定律得:



因此,绳的拉力大于物体A的重力.
故选A.
5.质点沿曲线从M向P点运动,关于其在P点的速度v与加速度a的方向,下列图示正确的是(  )
A.
B.
C.
D.
【答案】A
【解析】做曲线运动的物体速度的方向沿曲线的切线方向,且物体所受合力(或物体的加速度)大致指向轨迹凹的一侧。
故选A。
6.如图所示,O1、O2是皮带传动的两轮,O1半径是O2的2倍,O1上的C点到轴心的距离等于半径的一半,则
A.
B.
C.
D.
【答案】C
【解析】A、AB两点属于传送带传送。所以它们的线速度相等,故A错误;
B、AC属于同轴转动,具有相等的角速度,由v=ωr,可知A与C的线速度关系:vA:vC=rA:rC=2:1,故B错误;
C、AB两点的线速度相等,A的半径是B的半径的2倍,根据v=rω,知ωA:ωB=1:2,故C正确;
D、AC属于同轴转动,具有相等的角速度。故D错误;
故选C。
7.如图所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是(

A.车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来
B.人在最高点时对座位不可能产生压力
C.人在最低点时对座位的压力等于mg
D.人在最低点时对座位的压力大于mg
【答案】D
【解析】A.在最高点只要速度够大,则人对桌椅产生一个向上的作用力,既是没有安全带人也不会掉下去,A错误;
B.在最高点人对桌椅产生压力,则
解得
故只要速度满足
人在最高点时对座位可能产生大小为mg的压力,B错误;
CD.人在最低点受到座椅的支持力,重力,两力的合力充当向心力,即
解得
故C错误,D正确;
故选D。
8.无级变速是指在变速范围内任意连续地变换速度,其性能优于传统的挡位变速器,很多高档汽车都应用了“无级变速”.图所示为一种“滚轮-平盘无级变速器”的示意图,它由固定在主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动,如果认为滚轮不会打滑,那么主动轴的转速n1、从动轴的转速n2、滚轮半径r以及滚轮中心距离主动轴轴线的距离x之间的关系是
(
).
A.n2=n1
B.n1=n2
C.n2=n1
D.n2=n1
【答案】A
【解析】由滚轮不会打滑可知,主动轴上的平盘与可随从动轴转动的圆柱形滚轮在接触点处的线速度相同,即v1=v2,由此可得x·2πn1=r·2πn2,所以n2=n1,选项A正确.
9.如图,铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为,弯道处的圆弧半径为R,若质量为m的火车以速度v通过某弯道时,内、外轨道均不受侧压力作用,下面分析正确的是(

A.
B.若火车速度小于v时,外轨将受到侧压力作用,其方向平行轨道平面向内
C.若火车速度大于v时,外轨将受到侧压力作用,其方向平行轨道平面向外
D.无论火车以何种速度行驶,对内侧轨道都有压力
【答案】C
【解析】AD、火车以某一速度v通过某弯道时,内、外轨道均不受侧压力作用,其所受的重力和支持力的合力提供向心力,由图可以得出:
(为轨道平面与水平面的夹角
合力等于向心力,由牛顿第二定律得:,解得:,故AD错误;
B、当转弯的实际速度小于规定速度时,火车所受的重力和支持力的合力大于所需的向心力,火车有向心趋势,故其内侧车轮轮缘会与铁轨相互挤压,内轨受到侧压力作用方向平行轨道平面向内,故B错误;
C、当转弯的实际速度大于规定速度时,火车所受的重力和支持力的合力不足以提供所需的向心力,火车有离心趋势,故其外侧车轮轮缘会与铁轨相互挤压,外轨受到侧压力作用方向平行轨道平面向外,故C正确;
故选C
二、多选题
10.如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动,现给小球一初速度,使其做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是(
)
A.a处为拉力,b处为拉力
B.a处为拉力,b处为推力
C.a处为推力,b处为拉力
D.a处为推力,b处为推力
【答案】AB
【解析】小球做圆周运动,在最高点和最低点时,由合力提供向心力;在最高点,小球受重力和杆的弹力,假设弹力向下,如图
根据牛顿第二定律得到,

当F1<0,为支持力,向上;
当F1>0,为拉力,向下;
当F1=0,无弹力;
由牛顿第三定律知,在a处杆对球可能为拉力,也可能为推力.
球经过最低点时,受重力和杆的弹力,如图
由于合力提供向心力,即合力向上,故杆只能为向上的拉力;故AB正确,CD错误.
11.随着人们生活水平的提高,打高尔夫球将逐渐成为普通人的休闲娱乐项目之一.如图所示,某人从高出水平地面h的坡上水平击出一个质量为m的球,由于恒定的水平风力的作用,球竖直地落入距击球点水平距离为L的A穴.下列说法正确的是(  )
A.球被击出后做平抛运动
B.球从被击出到落入A穴所用的时间为
C.球被击出时的初速度大小为
D.球被击出后受到的水平风力的大小为
【答案】BC
【解析】由于水平方向受到空气阻力,不是平抛运动,故A错误;竖直方向为自由落体运动,由,得到,故B正确;由于球竖直地落入A穴,故水平方向为末速度为零匀减速直线运动,根据运动学公式,有解得,故C正确;水平方向分运动为末速度为零匀减速直线运动,由运动学公式由牛顿第二定律由上述各式可解得,D错误.故选BC.
12.如图所示,质量为m的物块,沿着半径为R的半球形金属壳内壁滑下,半球形金属壳竖直固定于地面,开口向上,物块滑到最低点时速度大小为v,若物块与球壳之间的动摩擦因数为μ,则当物块滑至最低点时,下列说法正确的是


A.物块受到的支持力大小为为
B.物块受到的支持力大小为
C.物块受到的摩擦力为
D.物块受到的摩擦力为
【答案】BD
【解析】在最低点,根据牛顿第二定律得:,则支持力,故A错误,B正确;摩擦力为:,故C错误,D正确.所以BD正确,AC错误.
三、填空题
13.如图所示,一皮带传动装置,皮带与轮不打滑,左边为主动轮,
在传动中A、B、C点的线速度之比
____________,角速度之比
________,加速度之比
________.
【答案】1:1:2;
3:2;3;
3:2:6;
【解析】由于A轮和B轮是皮带传动,皮带传动的特点是两轮与皮带接触点的线速度的大小与皮带的线速度大小相同,故有:vA=vB,所以:vA:vB=1:1,由角速度和线速度的关系式v=ωR可得:ωA:ωB=RB:RA=3:2;由于A轮和C轮共轴,故两轮角速度相同,即:ωA=ωC,故有:ωA:ωC=1:1,所以ωA:ωB:ωC=3:2:3;由角速度和线速度的关系式v=ωR可得:vA:vC=RA:RC=1:2,所以:vA:vB:vC=1:1:2;根据an=vω;则有:aA:aB:aC=(3×1):(2×1):(3×2)=3:2:6.
14.某质点做匀速圆周运动的轨道半径为80
cm,周期为2
s,则它做匀速圆周运动的角速度大小为___________;线速度大小为_________;向心加速度大小为________。
【答案】3.14s2.5m/s8m/s2
【解析】角速度大小为;线速度大小为;向心加速度大小为。
15.如下图所示,两个摩擦传动的轮子,A为主动轮,转动的角速度为ω,已知A、B轮的半径分别是R1和R2,C点离圆心捉为R2/2,则C点处的向心加速度是______.
【答案】
;
【解析】A、B两轮子边缘上的点线速度大小相等,有:
R1ω=R2ωB
解得
则C处的向心加速度:

16.质量为M的人抓住长为L的轻绳,绳的另一端系着质量为m的小球,现让小球在竖直平面内做圆运动,当球通过最高点时速度为v,则此时人对地面的压力为______________________.
【答案】

【解析】当小球经过最高点时,受到绳子向下的作用力与向下的重力,由牛顿第二定律得:

可得绳子的拉力

人拉绳子的力与绳子拉人的力大小相等,方向相反,所以人受到的绳子的拉力也是F,方向向上.人还受到重力和支持力的作用,所以人受到的支持力:

根据牛顿第三定律,此时人对地面的压力为:

四、解答题
17.如图所示,在倾角为37°的斜坡上有一人,前方有一动物沿斜坡匀速向下奔跑,速度v=15m/s,在二者相距L=30m时,此人以速度v0水平抛出一石块,打击动物,人和动物都可看成质点.(已知sin37°=0.6,g=10m/s2)
(1)若动物在斜坡上被石块击中,求v0的大小;
(2)若动物在斜坡末端时,动物离人的高度h=80m,此人以速度v1水平抛出一石块打击动物,同时动物开始沿水平面运动,动物速度v=15m/s,动物在水平面上被石块击中的情况下,求速度v1的大小.
【答案】(1)(2)
【解析】(1)设过程中石块运动所需时间为t
对于动物:运动的位移:s=vt
对于石块:竖直方向:(l+s)sin37°=gt2
水平方向:(l+s)cos37°=v0t
代入数据,由以上三式可得:v0=20m/s
(2)对动物,动物做匀速直线运动:x1=vt
对于石块:竖直方向:h=gt2
水平方向:
代入数据,由以上三式可得:v1=41.7m/s
18.在一根长为L、质量不计的细杆中点和末端各连一质量为m的小球B和C,如图所示,杆可以在竖直平面内绕固定点A转动,将杆拉到某位置放开,末端C球摆到最低位置时,杆BC段受到的拉力刚好等于C球重力的2倍.(g=10
m/s2)求:
(1)C球通过最低点时的线速度大小;
(2)杆AB段此时受到的拉力大小.
【答案】(1)(2)3.5mg
【解析】(1)C球通过最低点时,Fn=TBC-mg
即:2mg-mg=
解得C球通过最低点时的线速度为:vC=
(2)以最低点B球为研究对象,B球圆周运动的向心力为:Fn=TAB-mg-2mg
即TAB-3mg=
且vB=vC
解得杆AB段此时受到的拉力为:TAB=3.5mg
19.如图所示,在倾角为37°的斜坡上,从A点水平抛出一个物体,物体落在斜坡的B点,测得AB两点间的距离是75m,g取10m/s2,求:
(1)物体抛出时速度的大小;
(2)落到B点时的速度大小(结果带根号表示)。
【答案】(1)
20m/s;(2)
【解析】(1)由题意可得
代入数据解得:

(2)物体落到B点的竖直分速度为
根据平行四边形定则知:
20.如图所示,水平传送带以一定速度匀速运动,将质量m=1kg的小物块轻轻放在传送带上的P点,物块运动到A点后被水平抛出,小物块恰好无碰撞地沿圆弧切线从B点进入竖直光滑圆弧轨道下滑.B、C为圆弧上的两点,其连线水平,已知圆弧对应圆心角,A点距水平面的高度h=0.8m.小物块到达C点时的速度大小与B点相等,并沿固定斜面向上滑动,小物块从C点到第二次经过D点的时间间隔为0.8s,已知小物块与斜面间的动摩擦因数,重力加速度g取10
m/s2,取,cos53°=0.6,求:
(1)小物块从A到B的运动时间;
(2)小物块离开A点时的水平速度大小;
(3)斜面上C、D点间的距离.
【答案】(1)0.4s(2)3m/s(3)0.98m
【解析】(1)A到B做平抛运动,利用平抛运动规律求出时间.
(2)利用平抛运动规律,在B点对速度进行正交分解,得到水平速度和竖直方向速度的关系,而竖直方向速度
,显然易求,则水平速度可解.
(3)物块在轨道上上滑属于刹车问题,要求出上滑的加速度、所需的时间;再求出下滑加速度、距离,利用匀变速直线运动规律公式求出位移差.
解:(1)A到B做平抛运动
故s
(2)物块在B点的竖直分速度m/s
故小物块离开A点时的水平速度大小m/s
(3)m/s
由几何关系可知,斜面的倾角
沿斜面上滑的过程:
解得m/s2
从C点上滑至最高点的时间s
上滑的最大距离m
沿斜面下滑的过程:
解得m/s2
从最高点下滑至D点的时间s
从最高点下滑至D点的位移大小m
所以斜面上C、D点间的距离m
21.如图所示,倾角为37°的斜面长L=1.9m,在斜面底端正上方的O点将一小球以速度V0=3m/s的速度水平抛出,与此同时静止释放在顶端的滑块,经过一段时间后将小球恰好能够以垂直斜面的方向击中滑块。小球和滑块均视为质点,重力加速度g=10m/s2,求:
(1)小球从抛出到达斜面所用时间;
(2)抛出点O离斜面底端的高度;
(3)滑块与斜面间的动摩擦因数。
【答案】(1)0.4s;(2)1.7m;(3)0.125
【解析】(1)设小球击中滑块时的速度为v,竖直速度为vy,由几何关系得:
设小球下落的时间为t,小球竖直方向
vy=gt
解得:
t=0.4s
(2)竖直位移为y,水平位移为x,由平抛规律得
x=v0t
设抛出点到斜面最低点的距离为h,由几何关系得
h=y+xtan37°
由以上各式得
h=1.7m
(3)在时间t内,滑块的位移为s,由几何关系得:
设滑块的加速度为a,由运动学公式得:
对滑块,由牛顿第二定律得:
mgsin37°-μmgcos37°=ma
由以上各式得
μ=0.125
22.如图所示,图甲为游乐场的悬空旋转椅,我们把这种情况抽象为图乙的模型:一质量m
=
40kg的小球通过长L=12.5m的轻绳悬于竖直面内的直角杆上,水平杆长L′=
7.5m。整个装置绕竖直杆转动,绳子与竖直方向成θ角。当θ
=37°时,求:
(1)绳子的拉力大小
(2)该装置转动的角速度(g
=
10m/s?2?,sin37°=
0.6,cos37°=
0.8)
【答案】(1)500N
(2)rad/s
【解析】对球受力分析如图所示
球在竖直方向力平衡,故
F拉cos37°=mg
则:
(2)
小球做圆周运动的向心力由绳拉力和重力的合力提供,故:
mgtan37°=mω2(Lsin37°+L′)
解得:第五章
曲线运动
章末复习与测试
一、单选题
1.如图所示,以水平初速度m/s抛出物体,飞行一段时间后,落在倾角为30°的斜面上,此时速度方向与斜面夹角为60°,则物体在空中飞行的时间为(不计空气阻力,g取)(  )
A.1.5s
B.s
C.3s
D.s
2.下列关于运动和力的叙述中,正确的是(  )
A.做曲线运动的物体,其加速度方向一定是变化的
B.物体做圆周运动,所受的合力一定指向圆心
C.物体所受合力方向与运动方向相反,该物体一定做直线运动
D.物体运动的速率在增加,所受合力方向一定与运动方向相同
3.如图所示,在高尔夫球场上,某人从高出水平地面h的坡顶以速度v0水平击出一球,球落在水平地面上的C点.已知斜坡AB与水平面的夹角为θ,不计空气阻力.则下列说法正确的是
A.若球落到斜坡上,其速度方向与水平方向的夹角为定值
B.若球落到斜坡上,其速度方向与水平方向的夹角不确定
C.AC的水平距离为
D.小球落在C点时的速度大小为
4.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A的受力情况是(

A.绳的拉力大于A的重力
B.绳的拉力等于A的重力
C.绳的拉力小于A的重力
D.绳的拉力先大于A的重力,后变为小于重力
5.质点沿曲线从M向P点运动,关于其在P点的速度v与加速度a的方向,下列图示正确的是(  )
A.B.C.D.
6.如图所示,O1、O2是皮带传动的两轮,O1半径是O2的2倍,O1上的C点到轴心的距离等于半径的一半,则
A.
B.
C.
D.
7.如图所示,乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是(

A.车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来
B.人在最高点时对座位不可能产生压力
C.人在最低点时对座位的压力等于mg
D.人在最低点时对座位的压力大于mg
8.无级变速是指在变速范围内任意连续地变换速度,其性能优于传统的挡位变速器,很多高档汽车都应用了“无级变速”.图所示为一种“滚轮-平盘无级变速器”的示意图,它由固定在主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动,如果认为滚轮不会打滑,那么主动轴的转速n1、从动轴的转速n2、滚轮半径r以及滚轮中心距离主动轴轴线的距离x之间的关系是
(
).
A.n2=n1
B.n1=n2
C.n2=n1
D.n2=n1
9.如图,铁路在弯道处的内外轨道高低是不同的,已知内外轨道对水平面倾角为,弯道处的圆弧半径为R,若质量为m的火车以速度v通过某弯道时,内、外轨道均不受侧压力作用,下面分析正确的是(

A.
B.若火车速度小于v时,外轨将受到侧压力作用,其方向平行轨道平面向内
C.若火车速度大于v时,外轨将受到侧压力作用,其方向平行轨道平面向外
D.无论火车以何种速度行驶,对内侧轨道都有压力
二、多选题
10.如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动,现给小球一初速度,使其做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是(
)
A.a处为拉力,b处为拉力
B.a处为拉力,b处为推力
C.a处为推力,b处为拉力
D.a处为推力,b处为推力
11.随着人们生活水平的提高,打高尔夫球将逐渐成为普通人的休闲娱乐项目之一.如图所示,某人从高出水平地面h的坡上水平击出一个质量为m的球,由于恒定的水平风力的作用,球竖直地落入距击球点水平距离为L的A穴.下列说法正确的是(  )
A.球被击出后做平抛运动
B.球从被击出到落入A穴所用的时间为
C.球被击出时的初速度大小为
D.球被击出后受到的水平风力的大小为
12.如图所示,质量为m的物块,沿着半径为R的半球形金属壳内壁滑下,半球形金属壳竖直固定于地面,开口向上,物块滑到最低点时速度大小为v,若物块与球壳之间的动摩擦因数为μ,则当物块滑至最低点时,下列说法正确的是


A.物块受到的支持力大小为为
B.物块受到的支持力大小为
C.物块受到的摩擦力为
D.物块受到的摩擦力为
三、填空题
13.如图所示,一皮带传动装置,皮带与轮不打滑,左边为主动轮,
在传动中A、B、C点的线速度之比
____________,角速度之比
________,加速度之比
________.
14.某质点做匀速圆周运动的轨道半径为80
cm,周期为2
s,则它做匀速圆周运动的角速度大小为___________;线速度大小为_________;向心加速度大小为________。
15.如下图所示,两个摩擦传动的轮子,A为主动轮,转动的角速度为ω,已知A、B轮的半径分别是R1和R2,C点离圆心捉为R2/2,则C点处的向心加速度是______.
16.质量为M的人抓住长为L的轻绳,绳的另一端系着质量为m的小球,现让小球在竖直平面内做圆运动,当球通过最高点时速度为v,则此时人对地面的压力为______________________.
四、解答题
17.如图所示,在倾角为37°的斜坡上有一人,前方有一动物沿斜坡匀速向下奔跑,速度v=15m/s,在二者相距L=30m时,此人以速度v0水平抛出一石块,打击动物,人和动物都可看成质点.(已知sin37°=0.6,g=10m/s2)
(1)若动物在斜坡上被石块击中,求v0的大小;
(2)若动物在斜坡末端时,动物离人的高度h=80m,此人以速度v1水平抛出一石块打击动物,同时动物开始沿水平面运动,动物速度v=15m/s,动物在水平面上被石块击中的情况下,求速度v1的大小.
18.在一根长为L、质量不计的细杆中点和末端各连一质量为m的小球B和C,如图所示,杆可以在竖直平面内绕固定点A转动,将杆拉到某位置放开,末端C球摆到最低位置时,杆BC段受到的拉力刚好等于C球重力的2倍.(g=10
m/s2)求:
(1)C球通过最低点时的线速度大小;
(2)杆AB段此时受到的拉力大小.
19.如图所示,在倾角为37°的斜坡上,从A点水平抛出一个物体,物体落在斜坡的B点,测得AB两点间的距离是75m,g取10m/s2,求:
(1)物体抛出时速度的大小;
(2)落到B点时的速度大小(结果带根号表示)。
20.如图所示,水平传送带以一定速度匀速运动,将质量m=1kg的小物块轻轻放在传送带上的P点,物块运动到A点后被水平抛出,小物块恰好无碰撞地沿圆弧切线从B点进入竖直光滑圆弧轨道下滑.B、C为圆弧上的两点,其连线水平,已知圆弧对应圆心角,A点距水平面的高度h=0.8m.小物块到达C点时的速度大小与B点相等,并沿固定斜面向上滑动,小物块从C点到第二次经过D点的时间间隔为0.8s,已知小物块与斜面间的动摩擦因数,重力加速度g取10
m/s2,取,cos53°=0.6,求:
(1)小物块从A到B的运动时间;
(2)小物块离开A点时的水平速度大小;
(3)斜面上C、D点间的距离.
21.如图所示,倾角为37°的斜面长L=1.9m,在斜面底端正上方的O点将一小球以速度V0=3m/s的速度水平抛出,与此同时静止释放在顶端的滑块,经过一段时间后将小球恰好能够以垂直斜面的方向击中滑块。小球和滑块均视为质点,重力加速度g=10m/s2,求:
(1)小球从抛出到达斜面所用时间;
(2)抛出点O离斜面底端的高度;
(3)滑块与斜面间的动摩擦因数。
22.如图所示,图甲为游乐场的悬空旋转椅,我们把这种情况抽象为图乙的模型:一质量m
=
40kg的小球通过长L=12.5m的轻绳悬于竖直面内的直角杆上,水平杆长L′=
7.5m。整个装置绕竖直杆转动,绳子与竖直方向成θ角。当θ
=37°时,求:
(1)绳子的拉力大小
(2)该装置转动的角速度(g
=
10m/s?2?,sin37°=
0.6,cos37°=
0.8)