人教版(2019)高一物理必修第二册第六章 圆周运动 单元测试 解析版

文档属性

名称 人教版(2019)高一物理必修第二册第六章 圆周运动 单元测试 解析版
格式 zip
文件大小 907.4KB
资源类型 教案
版本资源 人教版(2019)
科目 物理
更新时间 2021-03-12 20:05:34

文档简介

圆周运动
单元测试
(总分100
60分钟)
选择题(共10小题,每题6分,共60分)
1.如图所示,修正带是通过两个齿轮的相互咬合进行工作的.其原理可简化为图中所示的模型.A、B是转动的齿轮边缘的两点,则下列说法中不正确的是(  )
A.A、B两点的线速度大小相等
B.A、B两点的角速度大小相等
C.A点的周期大于B点的周期
D.A点的向心加速度小于B点的向心加速度
答案:B 
解析:同缘传动时,边缘点的线速度相等,即vA=vB;根据v=ωr,可知半径大的角速度小,即ωA<ωB,根据T=,则有TA>TB,根据a=,可知半径大的向心加速度小,则有aA<aB,故A、C、D正确,B不正确.
2.甲、乙两名溜冰运动员,M甲=80kg,M乙=40kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两人相距0.9m,弹簧秤的示数为9.2N,下列判断中正确的是(  )
A.两人的线速度相同,约为40m/s
B.两人的角速度相同,为5rad/s
C.两人的运动半径相同,都是0.45m
D.两人的运动半径不同,甲为0.3m,乙为0.6m
答案:D
解析:甲、乙两人绕共同的圆心做匀速圆周运动,他们间的拉力互为向心力,他们的角速度相同,半径之和为两人的距离。设甲、乙两人所需向心力为F向,角速度为ω,半径分别为r甲、r乙,则
F向=M甲ω2r甲=M乙ω2r乙=9.2N①
r甲+r乙=0.9m②
由①②两式解得ω≈0.6rad/s,r甲=0.3m,r乙=0.6m,故只有选项D正确。
3.如图所示,圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,
物块恰好滑离转台开始做平抛运动。现测得转台半径R=0.6m,离水平地面的高度H=0.8m,物块平抛落地时水平位移的大小x=0.8m,重力加速度g=10m/s2。设物块所受的最大静摩擦力等于滑动摩擦力。则:(  )
A.物块运动到达地面的时间t=0.4s
B.物块做平抛运动的初速度大小v0=2m/s
C.物块与转台间的动摩擦因数μ=
D.物块落地点与转台圆心在地面的投影点间的距离d=1m
答案:ABD
解析:由H=
gt2得t=0.4s,故A正确;由x=v0t,得v0=2m/s,故B正确;根据μmg=m,得μ=,故C错误;d==1m,故D正确。
4.图甲为磁带录音机的磁带盒,可简化为图乙所示的传动模型,A、B为缠绕磁带的两个轮子,两轮的半径均为r,在放音结束时,磁带全部绕到了B轮上,磁带的外缘半径R=3r,现在进行倒带,使磁带绕到A轮上。倒带时A轮是主动轮,其角速度是恒定的,B轮是从动轮,则在倒带的过程中下列说法正确的是(  )
A.倒带开始时A、B两轮的角速度之比为1∶3
B.倒带结束时A、B两轮的角速度之比为1∶3
C.倒带过程中磁带的运动速度变大
D.倒带过程中磁带的运动速度不变
答案:BC
解析:此问题属皮带传动模型,=,
倒带开始时rA=rB,所以ωA∶ωB=3∶1,A错误;
倒带结束时,rA=3rB,所以ωA∶ωB=1∶3,B正确;
根据v=ωr可知倒带过程中磁带的运动速度变大,C正确,D错误。
5.如图所示,质量为m的物块从半径为R的半球形碗边向碗底滑动,滑到最低点时的速度为v,若物块滑到最低点时受到的摩擦力是Ff,则物块与碗的动摩擦因数为(  )
A.
B.
C.
D.
答案 B
解析 物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,据牛顿第二定律得FN-mg=m,又Ff=μFN,联立解得μ=,选项B正确.
6.如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是(  )
A.A的速度比B的大
B.A与B的向心加速度大小相等
C.悬挂A、B的缆绳与竖直方向的夹角相等
D.悬挂A的缆绳所受的拉力比悬挂B的小
答案 D
解析 因为物体的角速度ω相同,线速度v=rω,而rAtan
θ=,而B的向心加速度较大,则B的缆绳与竖直方向夹角较大,缆绳拉力FT=,则FTA7.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动.如图所示,图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h,下列说法中正确的是(  )
A.h越高,摩托车对侧壁的压力将越大
B.h越高,摩托车做圆周运动的线速度将越大
C.h越高,摩托车做圆周运动的周期将越大
D.h越高,摩托车做圆周运动的向心力将越大
答案 BC
解析 摩托车受力分析如图所示.
由于FN=
所以摩托车受到侧壁的压力与高度无关,保持不变,摩托车对侧壁的压力F也不变,A错误;由Fn=mgtan
θ=m=mω2r知h变化时,向心力Fn不变,但高度升高,r变大,所以线速度变大,角速度变小,周期变大,选项B、C正确,D错误.
8.如图所示,竖直平面内有一固定的圆形轨道,质量为m的小球在其内侧做圆周运动,在某圆周运动中,小球以速度v通过最高点时,恰好对轨道没有压力,经过轨道最低点时速度大小为2v,已知重力加速度为g,下列说法正确的是(  )
A.圆形轨道半径为gv2
B.小球在轨道最高点的加速度大小为g
C.小球在轨道最低点受到轨道的支持力大小为4mg
D.小球在轨道最低点受到轨道的支持力大小为5mg
答案:BD 
解析:小球恰好过最高点由重力提供向心力,根据牛顿第二定律可得:mg=m,解得:r=,故A错误;在最高点根据牛顿第二定律:mg=ma,可得小球在轨道最高点时的加速度大小为:a=g,故B正确;小球在最低点根据牛顿第二定律可得:FN-mg=m,联立以上可得:FN=5mg,故C错误,D正确.
9.如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如乙图所示。则(  )
A.小球的质量为
B.当地的重力加速度大小为
C.v2=c时,杆对小球的弹力方向向上
D.v2=2b时,小球受到的弹力与重力大小相等
答案:AD
解析:在最高点,若v=0,则N=mg=a;若N=0,由图知:v2=b,则有mg=m=m,解得g=,m=R,故A正确,B错误;由图可知:当v2<b时,杆对小球弹力方向向上,当v2>b时,杆对小球弹力方向向下,所以当v2=c时,杆对小球弹力方向向下,故C错误;若v2=2b。则N+mg=m=m,解得N=mg,即小球受到的弹力与重力大小相等,故D正确。故选AD。
10.有关圆周运动的基本模型,下列说法正确的是(  )
A.如图a,汽车通过拱桥的最高点处于超重状态
B.如图b所示是一圆锥摆,增大θ,但保持圆锥的高度不变,则圆锥摆的角速度不变
C.如图c,同一小球在光滑而固定的圆锥筒内的A、B位置先后分别做匀速圆周运动,则在A、B两位置小球的角速度及所受筒壁的支持力大小相等
D.火车转弯超过规定速度行驶时,外轨对外轮缘会有挤压作用
答案:BD
解析:汽车在最高点mg-FN=知FN<mg,故处于失重状态,故A错误;如图b所示是一圆锥摆,重力和拉力的合力F=mgtanθ=mω2r;r=htanθ,得ω=,故增大θ,但保持圆锥的高不变,角速度不变,故B正确;图C中根据受力分析知两球受力情况相同,即向心力相同,由F=mω2r知r不同角速度不同,故C错误;火车转弯超过规定速度行驶时,外轨对外轮缘会有挤压作用,故D正确。
计算题(共4小题,40分)
11.如图所示,一根长0.1m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得断前瞬间线的拉力比原来大40N,求:
(1)线断裂的瞬间,线的拉力为多大;
(2)绳断裂时小球运动的线速度为多大;
(3)如果桌面高出地面0.8m,线断后小球飞出去落在离桌面的水平距离为多大的地方?(g取10m/s2)
答案:(1)45N;(2)5m/s;(3)2m
解析:(1)小球在光滑桌面上做匀速圆周运动时受三个力作用:重力mg、桌面弹力FN和细线的拉力F,重力mg和弹力FN平衡,线的拉力提供向心力,F=mω2R,
设原来的角速度为ω,线上的拉力是F,加快后的角速度为ω1,线断时的拉力是F1,则
F1:F=ω:ω2=9︰1,
又F1=F+40N,
所以F=5N,线断时F1=45N。
(2)设线断时小球的线速度大小为v,
由F1=m,得v==m/s=5m/s。
(3)由平抛运动规律得小球在空中运动的时间
t==s=0.4s
小球落地处离开桌面的水平距离x=vt=5×0.4m=2m
12.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质量均为m的小球A、B以不同速率进入管内,A通过最高点C时,对管壁上部的压力为3mg,B通过最高点C时,对管壁下部的压力为0.75mg。求A、B两球落地点间的距离。
答案:3R
解析:两个小球在最高点时,受重力和管壁的作用力,这两个力的合力作为向心力,离开轨道后两球均做平
抛运动,A、B两球落地点间的距离等于它们平抛运动的水平位移之差。
对A球:3mg+mg=m vA=
对B球:mg-0.75mg=m vB=
SA=vAt=vA=4R SB=vBt=vB=R
∴SA-SB=3R
13.如图在水平圆盘上放有质量相同的滑块1和滑块2,圆盘可绕垂直圆盘的中心轴OO′转动.两滑块与圆盘的动摩擦因数相同均为μ,最大静摩擦力认为等于滑动摩擦力.两滑块与轴O共线且滑块1到转轴的距离为r,滑块2到转轴的距离为2r,现将两个滑块用轻质细线相连,保持细线伸直且恰无张力.当圆盘从静止开始转动,角速度极其缓慢地增大,针对这个过程,求解下列问题:
(1)求轻绳刚有拉力时圆盘的角速度;
(2)求当圆盘角速度为ω=时,滑块1受到的摩擦力.
[解析] (1)轻绳刚有拉力时,滑块2与转盘间的摩擦力达到最大静摩擦力,则由牛顿第二定律:
μmg=mω·2r 解得ω0=.
(2)当圆盘角速度为ω=>,此时滑块2与转盘间的摩擦力是最大静摩擦力,则
对滑块2:T+μmg=mω2·2r 
对滑块1:T+f1=mω2·r
解得f1=0.
[答案] (1)ω0= (2)摩擦力为0
14.汽车行驶在半径为50
m的圆形水平跑道上,速度为10
m/s.已知汽车的质量为1
000
kg,汽车与地面的最大静摩擦力为车重的0.8倍.问:(g取10
m/s2)
(1)汽车的角速度是多少?
(2)汽车受到的向心力是多大?
(3)汽车绕跑道一圈需要的时间是多少?
(4)要使汽车不打滑,则其速度最大不能超过多少?
[解析] (1)由v=rω可得,角速度为ω=

rad/s=0.2
rad/s.
(2)向心力的大小为:F向=m=1
000×
N=2
000
N.
(3)汽车绕一周的时间即是指周期,由v==得:T=≈s=31.4
s.
(4)汽车做圆周运动的向心力由车与地面之间的静摩擦力提供.随车速的增加,需要的向心力增大,静摩擦力随着一直增大到最大值为止.由牛顿第二定律得:
F向=fm ①,又F向=m ②fm=0.8G ③
联立①②③式解得,汽车过弯道的允许的最大速度为:v=
m/s=20
m/s
[答案] (1)0.2
rad/s (2)2
000
N (3)31.4
s
(4)20
m/s
第1页
/
共1页圆周运动
单元测试
(总分100
60分钟)
选择题(共10小题,每题6分,共60分)
1.如图所示,修正带是通过两个齿轮的相互咬合进行工作的.其原理可简化为图中所示的模型.A、B是转动的齿轮边缘的两点,则下列说法中不正确的是(  )
A.A、B两点的线速度大小相等
B.A、B两点的角速度大小相等
C.A点的周期大于B点的周期
D.A点的向心加速度小于B点的向心加速度
2.甲、乙两名溜冰运动员,M甲=80kg,M乙=40kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两人相距0.9m,弹簧秤的示数为9.2N,下列判断中正确的是(  )
A.两人的线速度相同,约为40m/s
B.两人的角速度相同,为5rad/s
C.两人的运动半径相同,都是0.45m
D.两人的运动半径不同,甲为0.3m,乙为0.6m
3.如图所示,圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,
物块恰好滑离转台开始做平抛运动。现测得转台半径R=0.6m,离水平地面的高度H=0.8m,物块平抛落地时水平位移的大小x=0.8m,重力加速度g=10m/s2。设物块所受的最大静摩擦力等于滑动摩擦力。则:(  )
A.物块运动到达地面的时间t=0.4s
B.物块做平抛运动的初速度大小v0=2m/s
C.物块与转台间的动摩擦因数μ=
D.物块落地点与转台圆心在地面的投影点间的距离d=1m
4.图甲为磁带录音机的磁带盒,可简化为图乙所示的传动模型,A、B为缠绕磁带的两个轮子,两轮的半径均为r,在放音结束时,磁带全部绕到了B轮上,磁带的外缘半径R=3r,现在进行倒带,使磁带绕到A轮上。倒带时A轮是主动轮,其角速度是恒定的,B轮是从动轮,则在倒带的过程中下列说法正确的是(  )
A.倒带开始时A、B两轮的角速度之比为1∶3
B.倒带结束时A、B两轮的角速度之比为1∶3
C.倒带过程中磁带的运动速度变大
D.倒带过程中磁带的运动速度不变
5.如图所示,质量为m的物块从半径为R的半球形碗边向碗底滑动,滑到最低点时的速度为v,若物块滑到最低点时受到的摩擦力是Ff,则物块与碗的动摩擦因数为(  )
A.
B.
C.
D.
6.如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是(  )
A.A的速度比B的大
B.A与B的向心加速度大小相等
C.悬挂A、B的缆绳与竖直方向的夹角相等
D.悬挂A的缆绳所受的拉力比悬挂B的小
7.有一种杂技表演叫“飞车走壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁高速行驶,做匀速圆周运动.如图所示,图中虚线表示摩托车的行驶轨迹,轨迹离地面的高度为h,下列说法中正确的是(  )
A.h越高,摩托车对侧壁的压力将越大
B.h越高,摩托车做圆周运动的线速度将越大
C.h越高,摩托车做圆周运动的周期将越大
D.h越高,摩托车做圆周运动的向心力将越大
8.如图所示,竖直平面内有一固定的圆形轨道,质量为m的小球在其内侧做圆周运动,在某圆周运动中,小球以速度v通过最高点时,恰好对轨道没有压力,经过轨道最低点时速度大小为2v,已知重力加速度为g,下列说法正确的是(  )
A.圆形轨道半径为gv2
B.小球在轨道最高点的加速度大小为g
C.小球在轨道最低点受到轨道的支持力大小为4mg
D.小球在轨道最低点受到轨道的支持力大小为5mg
9.如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如乙图所示。则(  )
A.小球的质量为
B.当地的重力加速度大小为
C.v2=c时,杆对小球的弹力方向向上
D.v2=2b时,小球受到的弹力与重力大小相等
10.有关圆周运动的基本模型,下列说法正确的是(  )
A.如图a,汽车通过拱桥的最高点处于超重状态
B.如图b所示是一圆锥摆,增大θ,但保持圆锥的高度不变,则圆锥摆的角速度不变
C.如图c,同一小球在光滑而固定的圆锥筒内的A、B位置先后分别做匀速圆周运动,则在A、B两位置小球的角速度及所受筒壁的支持力大小相等
D.火车转弯超过规定速度行驶时,外轨对外轮缘会有挤压作用
计算题(共4小题,40分)
11.如图所示,一根长0.1m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得断前瞬间线的拉力比原来大40N,求:
(1)线断裂的瞬间,线的拉力为多大;
(2)绳断裂时小球运动的线速度为多大;
(3)如果桌面高出地面0.8m,线断后小球飞出去落在离桌面的水平距离为多大的地方?(g取10m/s2)
12.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质量均为m的小球A、B以不同速率进入管内,A通过最高点C时,对管壁上部的压力为3mg,B通过最高点C时,对管壁下部的压力为0.75mg。求A、B两球落地点间的距离。
13.如图在水平圆盘上放有质量相同的滑块1和滑块2,圆盘可绕垂直圆盘的中心轴OO′转动.两滑块与圆盘的动摩擦因数相同均为μ,最大静摩擦力认为等于滑动摩擦力.两滑块与轴O共线且滑块1到转轴的距离为r,滑块2到转轴的距离为2r,现将两个滑块用轻质细线相连,保持细线伸直且恰无张力.当圆盘从静止开始转动,角速度极其缓慢地增大,针对这个过程,求解下列问题:
(1)求轻绳刚有拉力时圆盘的角速度;
(2)求当圆盘角速度为ω=时,滑块1受到的摩擦力.
14.汽车行驶在半径为50
m的圆形水平跑道上,速度为10
m/s.已知汽车的质量为1
000
kg,汽车与地面的最大静摩擦力为车重的0.8倍.问:(g取10
m/s2)
(1)汽车的角速度是多少?
(2)汽车受到的向心力是多大?
(3)汽车绕跑道一圈需要的时间是多少?
(4)要使汽车不打滑,则其速度最大不能超过多少?
第1页
/
共1页