第二十七章 相似
27.2 相似三角形
27.2.1 相似三角形的判定
课时2 用三边关系、边角关系判定三角形相似
目
录
CONTENTS
1 学习目标
2 新课导入
3 新课讲解
4 课堂小结
5 当堂小练
6 拓展与延伸
1.复习已经学过的三角形相似的判定定理.
2.掌握三边关系、边角关系判定三角形相似的方法,并能进行相关计算.(重点、难点)
学习目标
新课导入
情景导入
A
B
C
D
E
证明三角形全等有哪些方法?你能从中获得证明三角形相似的启发吗?
SSS,SAS,AAS,ASA,HL
新课讲解
知识点1 三边成比例的两个三角形相似
合作探究
画 △ABC 和 △A′B′C′,使 ,动手量一量这两个三角形的角,它们分别相等吗?这两个三角形是否相似?
A
B
C
C′
B′
A′
新课讲解
A
B
C
C′
B′
A′
通过测量不难发现∠A=∠A',∠B=∠B',∠C=∠C',又因为两个三角形的边对应成比例,所以 △ABC ∽△A′B′C′. 下面我们用前面所学得定理证明该结论.
新课讲解
∴
C′
B′
A′
证明:在线段 AB (或延长线) 上截取 AD=A′B′,
过点 D 作 DE∥BC 交AC于点 E.
∵ DE∥BC ,∴ △ADE ∽ △ABC.
∴ DE=B′C′,EA=C′A′.
∴△ADE≌△A′B′C′,△A′B′C′ ∽△ABC.
B
C
A
D
E
又 ,AD=A′B′,
∴ , .
新课讲解
结论
由此我们得到利用三边判定三角形相似的定理:
三边成比例的两个三角形相似.
∵ ,
∴ △ ABC ∽ △A′B′C.
符号语言:
新课讲解
例
典例分析
例1 判断图中的两个三角形是否相似,并说明理由.
A
B
C
3
3.5
4
D
F
E
1.8
2.1
2.4
解:在 △ABC 中,AB > BC > CA,在 △ DEF中, DE > EF > FD.
∴ △ABC ∽ △DEF.
∵ , , ,
∴ .
新课讲解
判定三角形相似的方法之一:如果题中给出了两个三角形的三边的长,分别算出三条对应边的比值,看是否相等.
注意:计算时最长边与最长边对应,最短边与最短边对应.
方法总结
新课讲解
典例分析
已知 △ABC 和 △DEF,根据下列条件判断它们是否相似.
(3) AB=12, BC=15, AC=24,
DE=16,EF=20, DF=30.
(2) AB=4, BC =8, AC=10,
DE=20,EF=16, DF=8;
(1) AB =3, BC =4, AC=6,
DE=6, EF=8, DF=9;
是
否
否
新课讲解
知识点2 两边成比例且夹角相等的两个三角形相似
合作探究
利用刻度尺和量角器画 △ABC和 △A′B′C′,使
∠A=∠A′, 量出 BC 及 B′C′ 的长,它们的比值等于 k 吗?再量一量两个三角形另外的两个角,你有什么发现?△ABC 与 △A′B′C′ 有何关系?
两个三角形相似
改变 k 和∠A 的值的大小,是否有同样的结论?
新课讲解
如图,在△ABC与△A′B′C′中,已知∠A= ∠A′,
证明:在 △A′B′C′ 的边 A′B′ 上截取点D,使 A′D = AB.
过点 D 作 DE∥B′C′,交 A′C′ 于点 E.
∵ DE∥B′C′,∴ △A′DE∽△A′B′C′.
求证:△ABC∽△A′B′C′.
B
A
C
D
E
B'
A'
C'
∴
新课讲解
∴ A′E = AC . 又 ∠A′ = ∠A.
∴ △A′DE ≌ △ABC,
∴ △A′B′C′ ∽ △ABC.
B
A
C
D
E
B'
A'
C'
∵ A′D=AB,
∴
新课讲解
结论
由此得到利用两边和夹角来判定三角形相似的定理:
两边成比例且夹角相等的两个三角形相似.
符号语言:
∵ ∠A=∠A′,
B
A
C
B'
A'
C'
∴ △ABC ∽ △A′B′C′ .
新课讲解
思考
对于△ABC和 △A′B′C′,如果 A′B′ : AB= A′C′ : AC. ∠B= ∠B′,这两个三角形一定会相似吗?
不会,如下图,因为不能证明构造的三角形和原三角形全等.
A
B
C
A′
B′
B″
C′
新课讲解
如果两个三角形两边对应成比例,但相等的角不是两条对应边的夹角,那么两个三角形不一定相似,相等的角一定要是两条对应边的夹角.
方法总结
新课讲解
典例分析
根据下列条件,判断 △ABC 和 △A′B′C′ 是否相似,并说明理由:
(1)AB=5,AC=3 ,∠A=45°,A'B'=10,A'C'=6, ∠A=45°;
解:(1)∵
∴
又 ∠A′ = ∠A=45°,∴ △ABC ∽ △A′B′C′.
新课讲解
典例分析
1. 在 △ABC 和 △DEF 中,∠C =∠F=70°,AC = 3.5 cm,BC = 2.5 cm,DF =2.1 cm,EF =1.5 cm. 求证:△DEF∽△ABC.
A
C
B
F
E
D
证明:∵ AC = 3.5 cm,BC = 2.5 cm,
DF = 2.1 cm,EF = 1.5 cm,
又 ∵∠C =∠F = 70°,∴ △DEF ∽△ABC.
∴
新课讲解
典例分析
证明: ∵ CD 是边 AB 上的高,
∴ ∠ADC =∠CDB =90°.
∴△ADC ∽△CDB,∴ ∠ACD =∠B,
∴ ∠ACB =∠ACD +∠BCD =∠B +∠BCD = 90°.
如图,在 △ABC 中,CD 是边 AB 上的高,且 ,求证 ∠ACB=90°.
A
B
C
D
∵
方法总结:解题时需注意隐含条件,如垂直关系,三角形的高等.
课堂小结
三边成比例的两个三角形相似.
三边成比例的两三角形相似
定理
步骤
排序
计算
判断
课堂小结
三边成比例的两个三角形相似
利用三边判定两个三角形相似
相似三角形的判定定理的运用
当堂小练
1. 判断
(1) 两个等边三角形相似 ( )
(2) 两个直角三角形相似 ( )
(3) 两个等腰直角三角形相似 ( )
(4) 有一个角是50°的两个等腰三角形相似 ( )
×
√
√
×
当堂小练
2. 如图,D 是 △ABC 一边 BC 上一点,连接 AD,使
△ABC ∽ △DBA的条件是 ( )
A. AC : BC=AD : BD
B. AC : BC=AB : AD
C. AB2 = CD · BC
D. AB2 = BD · BC
D
A
B
C
D
当堂小练
3.如果两个三角形的相似比为1,那么这两个三角形_____.
4.若△ABC与△A′B′C′相似,一组对应边的长为AB=3 cm,A′B′= 4 cm,那么△A′B′C′与△ABC的相似比是____ .
5.若△ABC的三条边长分别为3cm、5cm、6cm,与其相似的另一个△A′B′C′的最小边长为12 cm,那么△ A′B′C′的最大边长是_____.
全等
4︰3
24cm
当堂小练
解析:当 △ADP ∽△ACB 时,
AP : AB =AD : AC ,∴ AP : 12 =6 : 8 ,
解得 AP = 9;
当 △ADP ∽△ABC 时,
AD : AB =AP : AC ,∴ 6 : 12 = AP : 8 ,
解得 AP = 4.
∴ 当 AP 的长度为 4 或 9 时,
△ADP 和 △ABC 相似.
3. 如图,已知 △ABC中,D 为边 AC 上一点,P 为边AB上一点,AB = 12,AC = 8,AD = 6,当 AP 的长度为 时,△ADP 和 △ABC 相似.
A
B
C
D
4 或 9
P
P
拓展与延伸
4. 如图,△ABC中,点 D,E,F 分别是 AB,BC,CA的中点,求证:△ABC∽△EFD.
∴ △ABC∽△EFD.
证明:∵△ABC中,点D,E,F分别是AB,BC,CA的中点,
∴
∴
拓展与延伸
5. 如图,在四边形 ABCD 中,已知 ∠B =∠ACD,
AB=6,BC=4,AC=5,CD= ,求 AD 的长.
A
B
C
D
解:∵AB=6,BC=4,AC=5,CD= ,
∴
又∵∠B=∠ACD,
∴ △ABC ∽ △DCA,
∴ ,
∴
THANKS