2020-2021学年九年级数学人教版下册课件: 26.1.2 课时1 反比例函数的图象与性质(24张)

文档属性

名称 2020-2021学年九年级数学人教版下册课件: 26.1.2 课时1 反比例函数的图象与性质(24张)
格式 pptx
文件大小 1.2MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-03-14 12:42:28

图片预览

文档简介

第二十六章 反比例函数
26.1 反比例函数
26.1.2 反比例函数的图像与性质
课时1 反比例函数的图象与性质


CONTENTS
1 学习目标
2 新课导入
3 新课讲解
4 课堂小结
5 当堂小练
6 拓展与延伸
1.经历画反比例函数的图象、归纳得到反比例函数的图象特征和性质的过程 (重点、难点)
2.会画反比例函数图象,了解和掌握反比例函数的图象和性质.(重点)
学习目标
新课导入
知识回顾
我们已经学习过的函数有哪些?你还记得画这些函数图象时的方法吗?
写出一个反比例函数,你能画出它的图象吗?
新课讲解
知识点1 反比例函数的图象和性质
合作探究
例1 画反比例函数 与 的图象.
提示:画函数的图象步骤一般分为:列表→描点→连线. 需要注意的是在反比例函数中自变量 x 不能为 0.
解:列 表如下:
x

-6
-5
-4
-3
-2
-1
1
2
3
4
5
6





-1
-1.2
-1.5
-2
-3
-6
6
3
2
1.5
1.2
1
-2
-2.4
-3
-4
-6
6
4
3
2.4
2
新课讲解
O
-2
描点:以表中各组对应值作为点的坐标,在直角坐标系内描绘出相应的点.
5
6
x
y
4
3
2
1
1
2
3
4
5
6
-3
-4
-1
-5
-6
-1
-2
-3
-4
-5
-6
连线:用光滑的曲线顺次连接各点,即可
得  的图象.
新课讲解
观察这两个函数图象,回答问题:
思考:
(1) 每个函数图象分别位于哪些象限?
(2) 在每一个象限内,随着x的增大,y如何变化? 你能由它们的解析式说明理由吗?
(3) 对于反比例函数 (k>0),考虑问题(1)(2),你能得出同样的结论吗?
新课讲解
结论
反比例函数 (k>0) 的图象和性质:
●由两条曲线组成,且分别位于第一、三象限.它们与 x 轴、y 轴都不相交;
●在每个象限内,y 随 x 的增大而减小.
新课讲解
练一练
1. 反比例函数 的图象大致是 ( )
C
y
A.
x
y
o
B.
x
o
D.
x
y
o
C.
x
y
o
新课讲解
练一练
2. 已知反比例函数 的图象过点(-2,-3),函
数图象上有两点 A( ,y1),B(5,y2),则 y1与y2
的大小关系为 ( )
A. y1 > y2
B. y1 = y2
C. y1 < y2
D. 无法确定
C
提示:由题可知反比例函数的解析式为 ,因为6>0,且 A,B 两点均在该函数图象的第一象限部分,根据 >5,可知y1,y2的大小关系.
新课讲解
观察与思考
当 k =-2,-4,-6时,反比例函数 的图象,有哪些共同特征?回顾上面我们利用函数图象,从特殊到一般研究反比例函数 (k>0) 的性质的过程,你能用类似的方法研究反比例函数
(k<0)的图象和性质吗?
新课讲解
y
x
O
y
x
O
y
x
O
新课讲解
结论
反比例函数 (k<0) 的图象和性质:
●由两条曲线组成,且分别位于第二、四象限.它们与x轴、y轴都不相交;
●在每个象限内,y随x的增大而增大.
新课讲解
归纳
一般地,反比例函数 的图象是双曲线,它具有以下性质:
(1) 当 k > 0 时,双曲线的两支分别位于第一、三象限,在每一象限内,y 随 x 的增大而减小;
(2) 当 k < 0 时,双曲线的两支分别位于第二、四象限,在每一象限内,y 随 x 的增大而增大.
k 的正负决定反比例函数所在的象限和增减性.
新课讲解
(1)由于 x≠0,y≠0,所以反比例函数的图象与坐标轴没有交点(不经过原点).
(2)在描述反比例函数的增减性时,必须指明是“在每一个象限内”.
(3)反比例函数图象的位置和函数的增减性由 k 的符号决定;反之,由双曲线的位置或函数的增减性可确定 k 的符号.
新课讲解

典例分析
点(2,y1)和(3,y2)在函数 上,则y1 y2
(填“>”“<”或“=”).
<
新课讲解

方法总结:已知某个函数为反比例函数,只需要根据反比例函数的定义列出方程(组)求解即可.
已知反比例函数 ,y 随 x 的增大而增大,求a的值.
解:由题意得a2+a-7=-1,且a-1<0.
解得 a=-3.
课堂小结
反比例函数 (k≠0)
k
k > 0
k < 0
图象
性质
图象位于第一、三象限
图象位于第二、四象限
在每个象限内,y 随 x 的增大而减小
在每个象限内,y 随
x 的增大而增大
当堂小练
1. 反比例函数 的图象在 ( )
A. 第一、二象限 B. 第一、三象限
C. 第二、三象限 D.第二、四象限
B
2. 已知反比例函数 的图象在第一、三象限内,则m的取 值范围是________.
m > 2
当堂小练
3. 在同一直角坐标系中,函数 y = 2x 与 的图象大致是 ( )
O
x
y
O
x
y
O
x
y
O
x
y
A.
B.
C.
D.
B
当堂小练
4. 下列关于反比例函数 的图象的三个结论:
(1) 经过点 (-1,12) 和点 (10,-1.2);
(2) 在每一个象限内,y 随 x 的增大而减小;
(3) 双曲线位于二、四象限.
其中正确的是 (填序号).
(1)(3)
5. 在反比例函数   (k>0) 的图象上有两点 A (x1,y1),B (x2,y2), 且 x1>x2>0,则 y1-y2 0.

拓展与延伸
3.(2019·贺州中考)已知 ab <0,一次函数 y= ax-b 与反比例函数 ????=???????? 在同一直角坐标系中的图象可能是( )
?
解析:当 a>0 时,反比例函数 ????=???????? 的图象位于第一、第三象限,因为 ab<0,所以 b<0,所以一次函数 y=ax-b 的图象经过第一、第二、第三象限,故选项A正确,选项B不正确;
?
拓展与延伸
A
解析:当 a<0时,反比例函数 ????=???????? 的图象位于第二、第四象限,由 ab<0 可得 b>0,所以一次函数 y=ax-b 的图象经过第二、第三、第四象限,故选项C、D均不正确.
?
3.(2019·贺州中考)已知 ab <0,一次函数 y= ax-b 与反比例函数 ????=???????? 在同一直角坐标系中的图象可能是( )
?
THANKS