2020-2021年八年级数学北师大版下册第一章三角形的证明单元培优训练(Word版,含答案解析)

文档属性

名称 2020-2021年八年级数学北师大版下册第一章三角形的证明单元培优训练(Word版,含答案解析)
格式 doc
文件大小 390.0KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2021-03-17 00:04:23

图片预览

文档简介

第1章三角形的证明单元培优训练
一、选择题
1.在下列结论中:(1)有一个外角是120°的等腰三角形是等边三角形;
(2)有两个外角相等的等腰三角形是等边三角形;(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形;(4)三个外角都相等的三角形是等边三角形.
其中正确的个数是(  )
A.4个 B.3个 C.2个 D.1个
2.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的三角形有(  )
A.3对 B.4对 C.5对 D.7对
3.平面内,到三角形三边所在直线距离相等的点共有(  )个.
A.3 B.4 C.5 D.6
4.如图,等腰△ABC中,AB=AC,∠B=40°,AC边的垂直平分线交BC于点E,连接AE,则∠BAE的度数是(  )
A.45° B.50° C.55° D.60°
5.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有(  )个.
A.5 B.6 C.7 D.8
6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画(  )
A.5条 B.4条 C.3条 D.2条
7.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是(  )
A.10 B.8 C.6 D.4
8.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若,则△A6B6A7的边长为(  )
A.6 B.12 C.16 D.32
9.如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有(  )
①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.
A.①②③ B.①②④ C.②③④ D.①②③④
10.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为(  )
A.20° B.30° C.40° D.50°
11.有一直角三角板,30°角所对直角边长是6cm,则斜边的长是(  )
A.3cm B.6cm C.10cm D.12cm
12.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的(  )
A.如果∠A=2∠B=3∠C,则△ABC是直角三角形
B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形
C.如果a:b:c=1:2:2,则△ABC是直角三角形
D.如果a:b;c=3:4:,则△ABC是直角三角形
二、填空题
13.如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是   .
14.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=10,则DF等于   .
15.如图,已知△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC交BC于D,垂足为E,若DE=2cm,则BC=   cm.
16.如图,在△ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=   .
17.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ACD的度数为   .
18.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=10,则线段MN的长为   .
19.如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=   .
20.如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于   度.
21.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=   cm.
22.如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=   °.
三、解答题
23.如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.
24.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.
25.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,DE=1cm,求BD的长.
26.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点,BE=AC.
(1)求证:AD⊥BC.
(2)若∠BAC=75°,求∠B的度数.
27.在△ABC中,AD平分∠BAC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:AB=AC.
28.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.
(1)请你写出图中所有的等腰三角形;
(2)请你判断AD与BE垂直吗?并说明理由.
(3)如果BC=10,求AB+AE的长.
29.如图所示,已知△ABC中,AB=AC=BC=10厘米,M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度是1厘米/秒的速度,点N的速度是2厘米/秒,当点N第一次到达B点时,M、N同时停止运动.
(1)M、N同时运动几秒后,M、N两点重合?
(2)M、N同时运动几秒后,可得等边三角形△AMN?
(3)M、N在BC边上运动时,能否得到以MN为底边的等腰△AMN,如果存在,请求出此时M、N运动的时间?
30.如图1,在四边形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.
(1)求证:AD=DC;
(2)如图2,在上述条件下,若∠A=∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并证明你的结论.
31.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.
(1)如图1,连接EC,求证:△EBC是等边三角形;
(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;
(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.
参考答案
1.解:(1):因为外角和与其对应的内角的和是180°,已知有一个外角是120°,即是有一个内角是60°,有一个内角为60°的等腰三角形是等边三角形.该结论正确.
(2):两个外角相等说明该三角形中两个内角相等,而等腰三角形的两个底角是相等的,故不能确定该三角形是等边三角形.该结论错误.
(3):等腰三角形的底边上的高和中线本来就是重合的,“有一边”可能是底边,故不能保证该三角形是等边三角形.该结论错误.
(4):三个外角都相等的三角形是等边三角形.正确;
故选:C.
2.解:∵BD⊥AC,CE⊥AB,
∴∠ADB=∠AEC=90°,
∵AC=AB,
∵∠CAE=∠BAD,
∴△AEC≌△ADB;
∴CE=BD,
∵AC=AB,
∴∠CBE=∠BCD,
∵∠BEC=∠CDB=90°,
∴△BCE≌△CBD;
∴BE=CD,
∴AD=AE,
∵AO=AO,
∴△AOD≌△AOE;
∵∠DOC=∠EOB,
∴△COD≌△BOE;
∴OB=OC,
∵AB=AC,
∴CF=BF,AF⊥BC,
∴△ACF≌△ABF,△COF≌△BOF.
∵∠ABO=∠ACO,AB=AC,∠AOB=∠AOC,
∴△AOB≌△AOC,共7对,故选:D.
3.解:∵在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点;
在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.
∴到三角形三边所在直线距离相等的点有4个.
故选:B.
4.解:∵AB=AC,∠B=40°,
∴∠B=∠C=40°,
∴∠BAC=180°﹣∠B﹣∠C=100°,
又∵AC边的垂直平分线交BC于点E,
∴AE=CE,
∴∠CAE=∠C=40°,
∴∠BAE=∠BAE﹣∠CAE=60°.
故选:D.
5.解:①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;
②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);
③若CA=CB,则点C在AB的垂直平分线上,
∵A(0,0),B(2,2),
∴AB的垂直平分线与坐标轴有2个交点.
综上所述:符合条件的点C的个数有8个.
故选:D.
6.解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.
故选:B.
7.解:延长AP交BC于E,
∵BP平分∠ABC,
∴∠ABP=∠EBP,
∵AP⊥BP,
∴∠APB=∠EPB=90°,
在△ABP和△EBP中,

∴△ABP≌△EBP(ASA),
∴AP=PE,
∴S△ABP=S△EBP,S△ACP=S△ECP,
∴S△PBC=S△ABC=×12=6,
故选:C.
8.解:∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°﹣120°﹣30°=30°,
又∵∠3=60°,
∴∠5=180°﹣60°﹣30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=,
∴A2B1=,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=2,
A4B4=8B1A2=4,
A5B5=16B1A2=8,…
∴△AnBnAn+1的边长为×2n﹣1,
∴△A6B6A7的边长为×26﹣1=×25=16.
故选:C.
9.解:∵在△ABC中,∠ACB=90°,DE⊥AB,
∴∠ADE=∠ACB=90°,
∴∠A+∠B=90°,∠ACD+∠DCB=90°,
∵∠DCA=∠DAC,
∴AD=CD,∠DCB=∠B;故①正确;
∴CD=BD,
∵AD=CD,
∴CD=AB;故②正确;
∠DCA=∠DAC,
∴AD=CD,
但不能判定△ADC是等边三角形;故③错误;
∵若∠E=30°,
∴∠A=60°,
∴△ACD是等边三角形,
∴∠ADC=60°,
∵∠ADE=∠ACB=90°,
∴∠EDC=∠BCD=∠B=30°,
∴CF=DF,
∴DE=EF+DF=EF+CF.故④正确.
故选:B.
10.解:∵BD平分∠ABC,
∴∠ABD=∠DBC=20°,
∴∠ABC=40°,
∵∠ACB=90°,
∴∠A=90°﹣∠ABC=90°﹣40°=50°,
∵CD∥AB,
∴∠ACD=∠A=50°,
故选:D.
11.解:∵直角三角形中30°角所对的直角边为4cm,
∴斜边长为12cm.
故选:D.
12.解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;
B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;
C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;
D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;
故选:D.
13.解:∵斜边与直角边对应相等的两个直角三角形全等,
∴在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,使Rt△ABC≌Rt△DCB,添加的条件是:AB=DC.
故答案为:AB=DC.
14.解:过D作DM⊥AC,
∵∠DAE=∠ADE=15°,
∴∠DEC=30°,AE=DE,
∵AE=10,
∴DE=10,
∴DM=5,
∵DE∥AB,
∴∠BAD=∠ADE=15°,
∴∠BAD=∠DAC,
∵DF⊥AB,DM⊥AC,
∴DF=DM=5.
故答案为:5.
15.解:连接AD,
∵△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵DE垂直平分AC,
∴AD=CD,
∴∠DAC=∠C=30°,
∴AD=CD=2DE=2×2=4(cm),
∴∠BAD=∠BAC﹣∠DAC=90°,
∴BD=2AD=8(cm),
∴BC=BD+CD=12(cm).
故答案为:12.
16.解:∵△ABC为锐角三角形,
∴高AD和BE在三角形内.
∵高AD和BE交于点H,
∴∠ADC=∠BEC=90°.
∵∠EBD+∠BHD=90°,∠AHE+∠HAE=90°,∠BHD=∠AHE,
∴∠EAD=∠EBD,
又∵BH=AC,∠ADC=∠BDH=90°,
∴△BDH≌△ADC(AAS),
∴BD=AD,
∵∠ADB=90°,
∴∠ABC=45°.
故答案为45°
17.解:如图,有三种情形:
①当AC=AD时,∠ACD=70°.
②当CD′=AD′时,∠ACD′=40°.
③当AC=AD″时,∠ACD″=20°,
故答案为70°或40°或20°
18.解:∵MN∥BC
∴∠MEB=∠CBE,∠NEC=∠BCE
∵在△ABC中,∠ABC和∠ACB的平分线交于点E,
∴∠MBE=∠EBC,∠NCE=∠BCE
∴∠MEB=∠MBE,∠NEC=∠NCE
∴ME=MB,NE=NC
∴MN=ME+NE=BM+CN=10
故答案为:10
19.解:∵AD是等边△ABC的中线,
∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,
∴∠ADC=90°,
∵AD=AE,
∴∠ADE=∠AED==75°,
∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.
故答案为:15°.
20.解:连接BC.
设正方体的边长为1,则AB=AC=BC=,所以△ABC为等边三角形,∠BAC=60°.故答案是60.
21.解:在△ABD和△ACD中,
∴△ABD≌△ACD.
∴∠BAD=∠CAD.
又∵AB=AC,
∴BE=EC=3cm.
∴BC=6cm.
∵AB=AC,∠ABC=60°,
∴△ABC为等边三角形.
∴AB=6cm.
故答案为:6.
22.解:当AP⊥ON时,∠APO=90°,则∠A=50°,
当PA⊥OA时,∠A=90°,
即当△AOP为直角三角形时,∠A=50或90°.
故答案为:50或90.
23.证明:∵BE=CF,
∴BE+EF=CF+EF,即BF=CE,
∵∠A=∠D=90°,
∴△ABF与△DCE都为直角三角形,
在Rt△ABF和Rt△DCE中,,
∴Rt△ABF≌Rt△DCE(HL).
24.证明:∵AB=AC,
∴∠B=∠C,
又∵DE⊥AB,DF⊥AC,
∴∠BED=∠CFD=90°,
∵点D为BC中点,
∴DB=DC,
∴在△DBE和△DCF中,
∴△DBE≌DCF(AAS),
∴DE=DF.
25.解:如图,连接AD,
∵等腰△ABC中,∠BAC=120°,
∴∠B=∠C=(180°﹣120°)=30°,
∵DE是AC的垂直平分线,
∴AD=CD,
∴∠DAC=∠C=30°,
∴∠BAD=∠BAC﹣∠DAC=120°﹣30°=90°,
在Rt△CDE中,∵DE=1cm,
∴CD=2DE=2cm,
在Rt△ABD中,BD=2AD=2CD=2×2=4cm.
26.解:(1)连接AE,
∵EF垂直平分AB
∴AE=BE
∵BE=AC
∴AE=AC
∵D是EC的中点
∴AD⊥BC
(2)设∠B=x°
∵AE=BE
∴∠BAE=∠B=x°
∴由三角形的外角的性质,∠AEC=2x°
∵AE=AC
∴∠C=∠AEC=2x°
在三角形ABC中,3x°+75°=180°
x°=35°
∴∠B=35°
27.解:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,
根据角平分线上的点到角两边的距离相等得出DE=DF,
又∵BD=CD,∠DEB=∠DFC=90°,
∴Rt△DEB≌Rt△DFC(HL)),
∴∠B=∠C,
∴AB=AC.
28.解:(1)根据等腰三角形的定义判断,△ABC等腰直角三角形;
∵BE为角平分线,而AE⊥AB,ED⊥CE,故AE=DE,故△ADE均为等腰三角形;
∵BE=BE,∠ABE=∠DEB,
∴△ABE≌△DBE(SAS),
∴AB=BD,
∴△ABD和△ADE均为等腰三角形;
∵∠C=45°,ED⊥DC,
∴△EDC也符合题意,
综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;
(2)AD与BE垂直.
证明:∵△ABE≌△DBE(SAS),
∴BA=BD,EA=EC,
∴BE垂直平分相等AD,即AD⊥BE.
(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,
∴AE=DE,
在Rt△ABE和Rt△DBE中
∴Rt△ABE≌Rt△DBE(HL),
∴AB=BD,
又△ABC是等腰直角三角形,∠BAC=90°,
∴∠C=45°,又ED⊥BC,
∴△DCE为等腰直角三角形,
∴DE=DC,
即AB+AE=BD+DC=BC=10.
29.解:(1)设点M、N运动x秒后,M、N两点重合,
x×1+10=2x,
解得:x=10;
(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,
AM=t×1=t,AN=AB﹣BN=10﹣2t,
∵三角形△AMN是等边三角形,
∴t=10﹣2t,
解得t=,
∴点M、N运动秒后,可得到等边三角形△AMN.
(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,
由(1)知10秒时M、N两点重合,恰好在C处,
如图②,假设△AMN是等腰三角形,
∴AN=AM,
∴∠AMN=∠ANM,
∴∠AMC=∠ANB,
∵AB=BC=AC,
∴△ACB是等边三角形,
∴∠C=∠B,
在△ACM和△ABN中,
∵,
∴△ACM≌△ABN(AAS),
∴CM=BN,
设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,
∴CM=y﹣10,NB=30﹣2y,CM=NB,
y﹣10=30﹣2y,
解得:y=.故假设成立.
∴当点M、N在BC边上运动时,能得到以MN为底边的等腰△AMN,此时M、N运动的时间为秒.
30.(1)证明:∵DC∥AB,
∴∠CDB=∠ABD,
又∵BD平分∠ABC,
∴∠CBD=∠ABD,
∴∠CDB=∠CBD,
∴BC=DC,
又∵AD=BC,
∴AD=DC;
(2)△DEF为等边三角形,
证明:∵BC=DC(已证),CF⊥BD,
∴点F是BD的中点,
∵∠DEB=90°,∴EF=DF=BF.
∵∠ABC=60°,BD平分∠ABC,
∴∠DBE=30°,∠BDE=60°,
∴△DEF为等边三角形.
31.(1)证明:如图1所示:
在Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠ABC=60°,BC=.
∵BD平分∠ABC,
∴∠1=∠DBA=∠A=30°.
∴DA=DB.
∵DE⊥AB于点E.
∴AE=BE=.
∴BC=BE.
∴△EBC是等边三角形;
(2)结论:AD=DG+DM.
证明:如图2所示:延长ED使得DW=DM,连接MW,
∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,
∴∠ADE=∠BDE=60°,AD=BD,
又∵DM=DW,
∴△WDM是等边三角形,
∴MW=DM,
在△WGM和△DBM中,

∴△WGM≌△DBM,
∴BD=WG=DG+DM,
∴AD=DG+DM.
(3)结论:AD=DG﹣DN.
证明:延长BD至H,使得DH=DN.
由(1)得DA=DB,∠A=30°.
∵DE⊥AB于点E.
∴∠2=∠3=60°.
∴∠4=∠5=60°.
∴△NDH是等边三角形.
∴NH=ND,∠H=∠6=60°.
∴∠H=∠2.
∵∠BNG=60°,
∴∠BNG+∠7=∠6+∠7.
即∠DNG=∠HNB.
在△DNG和△HNB中,
∴△DNG≌△HNB(ASA).
∴DG=HB.
∵HB=HD+DB=ND+AD,
∴DG=ND+AD.
∴AD=DG﹣ND.