新人教版八年级下数学第二十章数据的分析全章教案

文档属性

名称 新人教版八年级下数学第二十章数据的分析全章教案
格式 zip
文件大小 127.0KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2012-01-26 15:51:51

文档简介

§20、1平均数(一)
教学目标 知识与技能 1、掌握算术平均数,加权平均数的概念。2、会求一组数据的算术平均数和加权平均数
过程与方法 经历探索加权平均数对数据处理的过程 ,体验对统计基本思想的理解过程,能运用数据信息的分析解决一些简单的实际问题。
情感态度与价值观 1、通过小组合作的活动,培养学生的合作意识和能力。2、通过解决实际问题,让学生体会数学与生活的密切联系
重点 算术平均数,加权平均数的概念及计算。
难点 加权平均数的概念及计算。
教学过程
备 注 教学过程 与 师生互动
第一步:引入新课: 在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)
第二步:讲授新课: 1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分: 95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、 87、86、88、86、90、90、99、80、87、86、99、95、92、92 甲小组:X= =91(分) 甲小组做得对吗?有不同求法吗? 乙小组:X= × × × × × × × = 91(分) 乙小组的做法可以吗?还有不同求法吗? 丙小组:先取一个数90做为基准a,则每个数分别与90的差为: 5、9、-3、0、0、-4、……、2、2 求出以上新的一组数的平均数X'=1 所以原数组的平均数为X=X'+90=91 想一想,丙小组的计算对吗?2、议一议:问:求平均数有哪几种方法?①平均数:一般地,如果有n个数x1,x2,……,xn,那么,叫做这n个数的平均数,读作“x拔”。
②加权平均数:如果n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次,(这里f1+f2+……+fk=n),那么,根据平均数的定义,这n个数的平均数可以表示为  这样求得的平均数叫做加权平均数,其中f1,f2,……,fk叫做权。
③利用基准求平均数X=X'+a
问:以上几种求法各有什么特点呢? 公式(1)适用于数据较小,且较分散。 公式(2)适用于出现较多重复数据。 公式(3)适用于数据较为接近于某一数据。
第三步:实际应用练习:P213 利用计算器 (1)计算两支球队的平均身高,哪支球队队员的身材更为高大? (2)计算两支球队的平均年龄,哪支球队队员的年龄更为年轻? 例1:某学校要了解期末数学考试成绩,从考试卷中抽取部分试卷,其中有一人得100分,2人得95分,8人得90分,10人得80分,15人得70分。求这些同学的平均成绩。
  分析:这个平均数是加权平均数。
  解:平均成绩:x =36(100×1+95×2+90×8+80×10+70×15)≈79.4
  例2:某同学使用计算器求30个数据的平均数时,错将其中的一个数据105输入为15,那么由此求出的平均数与实际平均数的差是______。
  解:由一组数据的平均数定义知
  实际平均数: x= (x1+x2+……+x29+105)
  求出的平均数:x错= (x1+x2+……+x29+15)
  错-==-3
  所以由此错误求出的平均数与实际平均数的差是-3。
  提示:解此类题一定要对平均数的定义十分清楚。
  例3:设两组数a1,a2,a3……an和b1,b2,b3……bn的平均数为和,那么新的一组数a1+b1,a2+b2,a3+b3……an+bn的平均数是 [   ]
  A.(+)   B. +   C.(+)   D.以上都不对
  错解:好像是(A)
  正解:根据平均数的定义应选(B)
第四步:随堂练习:1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80757188小兵768068902、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单位:小时)寿命450550600650700只数2010301525求这些灯泡的平均使用寿命?答案:1. =79.05 =80 2. =597.5小时
第五步:课后练习:1、在一个样本中,2出现了x次,3出现了x次,4出现了x次,5出现了x次,则这个样本的平均数为 .2、某人打靶,有a次打中环,b次打中环,则这个人平均每次中靶 环。3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:应聘者笔试面试实习甲858390乙808592试判断谁会被公司录取,为什么?4、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?答案:1. 2. 3.=86.9 =96.5 乙被录取 4. 39人
小结与反思:20.2.2 方差
教学目标 知识与技能 1、了解方差的定义和计算公式。2. 理解方差概念的产生和形成的过程。3. 会用方差计算公式来比较两组数据的波动大小。
过程与方法 经历探索极差、方差的应用过程,体会数据波动中的极差、方差的求法时以及区别,积累统计经验。
情感态度与价值观 培养学生的统计意识,形成尊重事实、用数据说话的态度,认识数据处理的实际意义。
重点 方差产生的必要性和应用方差公式解决实际问题。掌握其求法,
难点 理解方差公式,应用方差对数据波动情况的比较、判断。
教学过程
备 注 教学设计 与 师生互动
第一步:情景创设乒乓球的标准直径为40mm,质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测。结果如下(单位:mm):A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1; B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.你认为哪厂生产的乒乓球的直径与标准的误差更小呢 请你算一算它们的平均数和极差。是否由此就断定两厂生产的乒乓球直径同样标准?今天我们一起来探索这个问题。探索活动通过计算发现极差只能反映一组数据中两个极值之间的大小情况,而对其他数据的波动情况不敏感。让我们一起来做下列的数学活动算一算把所有差相加,把所有差取绝对值相加,把这些差的平方相加。想一想你认为哪种方法更能明显反映数据的波动情况?
第二步:讲授新知:(一)方差定义:设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。意义:用来衡量一批数据的波动大小在样本容量相同的情况下,方差越大,说明数据的波动越大, 越不稳定归纳:(1)研究离散程度可用(2)方差应用更广泛衡量一组数据的波动大小(3)方差主要应用在平均数相等或接近时(4)方差大波动大,方差小波动小,一般选波动小的方差的简便公式:推导:以3个数为例(二)标准差:方差的算术平方根,即④并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.注意:波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
第三步:解例分析:例1 填空题;(1)一组数据:,,0,,1的平均数是0,则= .方差 .(2)如果样本方差,那么这个样本的平均数为 .样本容量为 .(3)已知的平均数10,方差3,则的平均数为 ,方差为 .例2 选择题:(1)样本方差的作用是( )A、估计总体的平均水平 B、表示样本的平均水平C、表示总体的波动大小 D、表示样本的波动大小,从而估计总体的波动大小(2)一个样本的方差是0,若中位数是,那么它的平均数是( )A、等于 B、不等于 C、大于 D、小于(3)已知样本数据101,98,102,100,99,则这个样本的标准差是( ) A、0 B、1 C、 D、2(4)如果给定数组中每一个数都减去同一非零常数,则数据的( )A、平均数改变,方差不变 B、平均数改变,方差改变C、平均数不变,方差不变 A、平均数不变,方差改变例3 为了考察甲、乙两种农作物的长势,分别从中抽取了10株苗,测得苗高如下:(单位:mm) 甲:9,10,11,12,7,13,10,8,12,8 乙:8,13,12,11,10,12,7,7,9,11请你经过计算后回答如下问题:(1)哪种农作物的10株苗长的比较高?(2)哪种农作物的10株苗长的比较整齐?P154例1分析应注意的问题:题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。方差怎样去体现波动大小?这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
第四步:随堂练习:1. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、11、12、7、13、10、8、12、8;乙:8、13、12、11、10、12、7、7、9、11;问:(1)哪种农作物的苗长的比较高?(2)哪种农作物的苗长得比较整齐?2. 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?测试次数12345段巍1314131213金志强1013161412参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐 2.段巍的成绩比金志强的成绩要稳定。
第五步;课后练习:1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为 。2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均数相同,但S S,所以确定 去参加比赛。3. 甲、乙两台机床生产同种零件,10天出的次品分别是( )甲:0、1、0、2、2、0、3、1、2、4乙:2、3、1、2、0、2、1、1、2、1分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)小爽10.810.911.010.711.111.110.811.010.710.9小兵10.910.910.810.811.010.910.811.110.910.8如果根据这几次成绩选拔一人参加比赛,你会选谁呢?答案:1. 6 2. >、乙; 3. =1.5、S=0.975、=1. 5、S=0.425,乙机床性能好4. =10.9、S=0.02; =10.9、S=0.008 选择小兵参加比赛。
小结 与 课后反思:复习与交流
教学目标 知识与技能 了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理。
过程与方法 经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力。
情感态度与价值观 培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值。
重点 应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容。
难点 方差概念的理解和应用。
教学过程
备 注 教学设计 与 师生互动
第一步:回顾交流、系统跃进知识线索:平均数 中位数 众数 极差 方差 集中趋势 波动大小 数 字 特 征 应 用本章思想:平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。 (定义法) 且f1+f2+……+fk=n (加权法)当一组数据中个别数据与其它数据差异较大时,可求出其中位数来观察集中趋势;理解当一组数据中不少数据多次重复出现时,可通过众数观察其集中趋势,理解另一类是反映数据波动大小(即离散趋势)的特征数——极差、方差。设有n个数据,各数据与它们的平均数的差的平方分别是,…,我们用它们的平均数,即用
第二步:联系实际 主动探索问题1、已知;某学校六年级学生的身高的一个样本如下(单位:cm)158 162 146 151 153 168 159 154 167 159 167 166 159 154 160 162 164 160 157 149(1)试填写下面的频数分布表,并绘制相应的频数颁布直方图分组频数累计频数146 ~ 149150 ~ 152153 ~ 155156 ~ 158159 ~ 161162 ~ 164165 ~ 167168 ~ 170合计(2)估算这个年段学生的平均身高。(3)求出这个年段学生的身高的极差。问题2:在一次中学生田径运动会上,参加男子跳高的23名运动员的成绩如下表所示:(单位:米)成绩1.501.601.651.701.751.801.851.90人数12457211求出它们的跳高成绩的平均数、众数、中位数。(答案:1。71、1。75、1。70)
第三步;复习巩固 提高深化:1、右图是一组数据的折线统计图,这组数据的极差是 ,平均数是 .2.若样本数据1,2,3,2的平均数是a,中位数是b,众数是c,则数据a、b、c的方差是 .3、某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:1号2号3号4号5号总分甲班1009811089103500乙班861009811997500 (1)计算甲、乙两班的优分率;(2)求两班比赛数据的中位数。(3)估计两个比赛数据的方差哪一个小 (4)根据以上信息,你认为应该把冠军奖状发给哪一个班级 简述理由.3、某市射击队甲、乙两位优秀队员在相同的条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写下表:(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差结合看;(分析谁的成绩好些);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数结合看(分析谁的成绩好些);④如果省射击队到市射击队靠选拔苗子进行培养,你认为应该选谁?4、某同学进行社会调查,随机抽查了某个地区的20个家庭的年收人情况,并绘制了统计图.请你根据统计图给出的信息回答:(1)填写完成下表:这20个家庭的年平均收入为 万元.(2)样本中的中位数、众数分别是多少? (3)在平均数、中位数两数中,哪个更能反映这个地区家庭的年收入水平.为什么?5、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表班级参加人数中位数方差平均数甲55149191135乙55151110135丙同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相同 ②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字汉字≥150个为优秀)③甲班成绩的波动比乙班大。上述结论正确是( )A、①②③ B、①② C、①③ D、②③6、某商场服务部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标的完成情况进行适当的奖惩。为了确定一个合适的目标,商场统计了每个营业员在某月的销售额,数据如下(单位:万元): 17 18 16 13 24 15 28 26 18 19 22 17 16 19 3230 16 14 15 26 15 32 23 17 15 15 28 28 16 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的目标,你认为月销售额定多少合适?说明理由?(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定多少合适?说明理由?7、某公司10名销售员,去年完成的销售额情况如下表:销售额(单位:万元)34567810销售员人数(单位:人)1321111  (1)求销售额的平均数、众数、中位数;  (2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元
小结与反思:20.1.2 中位数和众数(一)
教学目标 知识与技能 1、认识中位数和众数,并会求出一组数据中的众数和中位数。2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。3、会利用中位数、众数分析数据信息做出决策。
过程与方法 经历探索中位数、众数的概念的过程,学会根据数据做出总体的初步的思想、合理论证,领会平均数、中位数、众数的特征数的联系和区别。
情感态度与价值观 培养学生良好的数字信息处理的意识,建立学好数学的自信心,体会发展的内涵与价值。
重点 认识中位数、众数这两种数据代表
难点 利用中位数、众数分析数据信息做出决策。
教学过程
备 注 教学设计 与 师生互动
第一步:课前引入:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。请同学们看下面问题: NO1、 一家鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的鞋的销售量如下表所示:鞋的尺码
(单位:厘米)2222.52323.52424.525销售量
(单位:双)12511731在这个问题里,鞋店比较关心的是哪种尺码的鞋销售得最多.师引导学生观察表格,并思考表格反映的是多少个数据的全体.(NO2、在一次数学竞赛中,5名学生的成绩从低分到高分排列庆次是:   55 57 61 62 98  教师引导学生观察在这5个数据中,前4个数据的大小比较接近,最后1个数据与它们的差异较大.这时如果用其中最中间的数据61来描述这组数据的集中趋势,可以不受个别数据较大变动的影响
第二步;讲授新课:一、总结概念:众数的定义:在一组数据中,出现次数最多的数据叫做这组数据的众数.中位数定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。二、求中位数与众数和步骤:求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。三、中位数和众数意义和作用:中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。
第三步:应用举例:例110名工人某天生产同一零售,生产的件数是:  15 17 14 10 15 19 17 16 14 12  求这一天10名工人生产的零件的中位数.  教师引导学生观察分析后,让学生自解.  解:将10个数据按从小到大的顺序排列,得到:  10 12 14 14 15 15 16 17 17 19  左右最中间的两个数据都是15,它们的平均数是15,即这组数据的中位数是15(件).  答:这一天10人生产的零件的中位数是15件.  例2在一次中学生田径运动会上,参加男子跳高的17名运动员的成  绩如下表所示:成绩
(单位:米)1.501.601.651.701.751.801.851.90人数23234111分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第 2位)例3:某班四个小组的人数如下:10,10,x,8,已知这组数据的中位数与平均数相等,求这组数据的中位数。
  分析:根据求平均数公式可列出该数据组的平均数为(10+10+x+8),中位数要先从小到大排列后才可求出,又不知道x的大小,就要分情况讨论,然后列方程求解。
  解:平均数:=
 (1)当x≤8时,原数据按从小到大排列为:x,8,10,10,其中位数为=9
  若=9,则x=8
  ∴此时中位数为9
 (2)当8  (3)当x≥10时,原数据按从小到大排列为:8,10,10,x其中位数为=10
  若=10,则x=12
  ∴此时中位数是10
  综上所述,这组数据的中位数是9或10
  说明:分类讨论是数学中的重要思想方法,解题时一定要全面考虑,对可能出现的各种情况要逐个研究讨论。
第四步:随堂练习1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150求这15个销售员该月销量的中位数和众数。假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:1匹1.2匹1.5匹2匹3月12台20台8台4台4月16台30台14台8台根据表格回答问题:商店出售的各种规格空调中,众数是多少?假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?答案:1. (1)210件、210件 (2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。2. (1)1.2匹 (2)通过观察可知1.2匹的销售最大,所以要多进1.2匹,由于资金有限就要少进2匹空调。
第五步:课后练习数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是 ,众数是 一组数据23、27、20、18、X、12,它的中位数是21,则X的值是 . 数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( )A.97、96 B.96、96.4 C.96、97 D.98、97如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24、25 B.23、24 C.25、25 D.23、25随机抽取我市一年(按365天计)中的30天平均气温状况如下表:温度(℃)-8-1715212430天数3557622请你根据上述数据回答问题:(1).该组数据的中位数是什么?(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天
课后反思:
台数
规格
月份20.2.1极差
教学目标 知识与技能 1、理解极差的概念,知道极差等于一组数据中最大数与最小数的差。2、引导学生发现极差能反映一组数据中两个极端值之间的差异情况,是刻画一组数据离散程度的一个统计量。3、能够列举几个利用极差进行比较的实例。4、生体会数学与生活密切相关
过程与方法 通过一系列富有启发性、层层深入的问题,引导学生广泛思考和探索。通过对解决问题的反思获得解决问题的经验,结实显示生活中的现象。
情感态度与价值观 通过与生活实际紧密联系的大量问题的解决,引发学生学习数学的兴趣,体会数学源于生活;通过与数据集中趋势比较学习,培养学生独立思考、勇于创新的科学精神,并形成实事求是的科学态度。
重点 极差概念的理解
难点 极差概念的引入
教 学 过 程
备 注 教学设计 与 师生互动
第一步:创设情景:问题:为了比较甲、乙两种棉花品种的好坏,任意抽取每种棉花各10棵,统计它们结桃数的情况如下:甲种棉花84798184858283868789乙种棉花85848979819179768284你认为两种棉花哪种结桃情况较好?操作:让学生在各个的学习小组中讨论、解释、交流自己的发现.教师可以参与到某个或几个小组中倾听。在小组学习中讨论、交流发现另一个统计量极差(它有别于平均数、众数、中位数),极差反映了一组数据的离散程度。思考:你能获取什么信息呢?发现1.甲种棉花结桃的最多数目为89,最少数目为79,其差为10;乙种棉花结桃的最多数目为91,最少数目为76,其差为15。发现2.乙种棉花的结桃数据较甲种棉花的结桃更分散,分散的程度较大,说明棉花的结桃情况越不稳定。通过以上发现可知:甲种棉花的结桃情况较乙种棉花好
第二步:归纳总结:极差定义:一组数据的最大数据与最小数据的差叫这组数据的极差。表达式:极差=最大值-最小值总结:1. 极差是刻画数据离散程度的最简单的统计量2. 特点是计算简单3. 极差是利用了一组数据两端的信息,但不能反映出中间数据的分散状况注意:极差反映一组数据两个极端值之间的差异情况,仅由两个数据评判一组数据是不科学的,要了解其他的统计量,在此为下一节的内容埋下伏笔。
第三步;随堂练习:1、一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 .2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= .3、下列几个常见统计量中能够反映一组数据波动范围的是( )A.平均数 B.中位数 C.众数 D.极差4、一组数据X、X…X的极差是8,则另一组数据2X+1、2X+1…,2X+1的极差是( )A. 8 B.16 C.9 D.17答案:1. 497、3850 2. 4 3. D 4.B
第四步;课后练习:1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是( )A. 0.4 B.16 C.0.2 D.无法确定在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是( )A. 87 B. 83 C. 85 D无法确定3、已知一组数据2.1、1.9、1.8、X、2.2的平均数为2,则极差是 。4、若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 。5、某活动小组为使全小组成员的成绩都要达到优秀,打算实施“以优帮困”计划,为此统计了上次测试各成员的成绩(单位:分)90、95、87、92、63、54、82、76、55、100、45、80计算这组数据的极差,这个极差说明什么问题?将数据适当分组,做出频率分布表和频数分布直方图。答案:1.A ; 2.D ; 3. 0.4 ; 4.30、40. 5(1)极差55分,从极差可以看出这个小组成员成绩优劣差距较大。(2)略
第五步:课堂小结本节课我们主要学习了极差——反映一组数据变化范围的大小2、极差=最大值-最小值3、极差在分析一组数据的离散程度时,仍有不足的一面。
课后反思:本节课创设恰当的问题情景,激发了学生的兴趣与思考。引导学生把数据转化成图象,观察、比较、分析从另一个角度来刻画这组数据的变化范围。巧妙地引出极差概念,体会概念的形成过程,接着呈现多种形式的问题,通过思考、合作交流进一步理解极差概念。使学生学会收集、整理、分析数据,逐步地掌握统计思想。20.1.2 中位数和众数(二)
教学目标 知识与技能 1、进一步认识平均数、众数、中位数都是数据的代表。2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。3、能灵活应用这三个数据代表解决实际问题。
过程与方法 经历探索常见的数据集中趋势的特征数的过程,感受其实际应用,掌握判断方法。
情感态度与价值观 培养数据信息素养,体会数据的集中趋势的特征数的实际应用价值。
重点 了解平均数、中位数、众数之间的差异。
难点 灵活运用这三个数据代表解决问题。
教 学 过 程
备 注 科学设计 与 师生互动
第一步;理解体验:1、复习平均数、中位数和众数定义2、引入课本P146R的例子思路点拨:商场统计每位营业员在某月的销售额组成一个样本,从样本数据中的平均数、中位数、众数中得到信息估计总体的趋势,达到问题的解决。由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的。
第二步:总结提升:平均数、众数和中位数这三个数据代表的异同:平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.实际问题中求得的平均数,众数,中位数应带上单位.
第三步:随堂练习:1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:得分5060708090100110120人数2361415541分别求出这些学生成绩的众数、中位数和平均数.2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)甲群:13、13、14、15、15、15、16、17、17。乙群:3、4、4、5、5、6、6、54、57。(1)、甲群游客的平均年龄是 岁,中位数是 岁,众数是 岁,其中能较好反映甲群游客年龄特征的是 。(2)、乙群游客的平均年龄是 岁,中位数是 岁,众数是 岁。其中能较好反映乙群游客年龄特征的是 。答案:1. 众数90 中位数 85 平均数 84.62.(1)15、15、15、众数(2).15、5.5、6、中位数
第四步:课后练习:1、某公司的33名职工的月工资(以元为单位)如下:职员董事长副董事长董事总经理经理管理员职员人数11215320工资5500500035003000250020001500(1)、求该公司职员月工资的平均数、中位数、众数?(2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示:部门ABCDEFG人数1124223每人所创的年利润2052.52.11.51.51.2根据表中的信息填空:该公司每人所创年利润的平均数是 万元。该公司每人所创年利润的中位数是 万元。你认为应该使用平均数和中位数中哪一个来描述该公司每人所创年利润的一般水平?答 答案:1.(1).2090 、500、1500(2).3288、1500、1500(3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平。2.(1)3.2万元 (2)2.1万元 (3)中位数
小结与课后反思 :20.1.1平均数(二)
教学目标 知识与技能 1、加深对加权平均数的理解2、会根据频数分布表求加权平均数,从而解决一些实际问题3、会用计算器求加权平均数的值
过程与方法 经历探索加权平均数的应用过程,体验和理解统计的基本思想,学会频数分布表中应用加权平均数的方法。
情感态度与价值观 乐于接触社会环境中的数学信息,了解数学对促进社会进步和发展人类理解精神的作用。
重点 根据频数分布表求加权平均数
难点 根据频数分布表求加权平均数
教学过程
备 注 教学设计 与 师生互动
第一步:课堂引入设计的几个问题如下:(1)、请同学读P140探究问题,依据统计表可以读出哪些信息(2)、这里的组中值指什么,它是怎样确定的?(3)、第二组数据的频数5指什么呢?(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
第二步:应用举例:例1:为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:载客量/人组中值频数(班次)1≤x<2111321≤x<4131541≤x<61512061≤x<81712281≤x<1019118101≤x<12111115这天5路公共汽车平均每班的载客量是多少?分析:根据上面的频数分布表求加权平均数时,统计中常用的各组的组中值代表各组的实际数据,把各组频数看作相应组中值的权。例如在1≤x<21之间的载客量近似地看作组中值11,组中值11的权是它的频3,由此这天5路公共汽车平均每班的载客量是:思考:从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?分析:由表格可知, 81≤x<101的18个班次 和101≤x<121的15个班次共有33个班次超过平均载客量,占全天总班次的百分比为33/83等于39.8%活动:使用计算器说明,操作时需要参阅计算器的使用说明书,通常需要先按动有关键,使计算器进入统计状态;然后依次输入数据x1,x2,…,xn ,以及它们的权f,f2,…,fn ;最后按动求平均数的功能键(例如 键),计算器便会求出平均数的值。例2:下表是校女子排球队队员的年龄分布:年龄13141516频数1452求校女子排球队队员的平均年龄(可使用计算器)。解:答:校女子排球队队员的平均年龄为14.7岁
所用时间t(分钟)人数0<t≤1040<≤620<t≤201430<t≤401340<t≤50950<t≤604第三步:课堂练习:1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表(1)、第二组数据的组中值是多少?(2)、求该班学生平均每天做数学作业所用时间2、某班40名学生身高情况如下图,请计算该班学生平均身高答案1.(1).15. (2)28. 2. 165
第四步:课后练习:1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表部门ABCDEFG人数1124225每人创得利润2052.521.51.51.2该公司每人所创年利润的平均数是多少万元?2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?年龄频数28≤X<30430≤X<32332≤X<34834≤X<36736≤X<38938≤X<401140≤X<422
3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。答案:1.约2.95万元 2.约29岁 3.60.54分贝
第五步:课堂小结:1、体会运用样本平均数去估计总体平均数的意义.2、会运用样本平均数估计总体平均数3、增强数学应用意识
课后反思 :
165
10
5
身高(cm)
185
175
155
145
15
20
6
10
20
4
人数(人)
60
10
5
噪音/分贝
80
70
50
40
15
20
6
12
18
4
频数
10
90