学习目标
进一步掌握平行线的判定方法,并会运用平行线的
判定解决问题.
掌握垂直于同一条直线的两条直线互相平行.
1.到目前为止,判定两直线平行的方法有哪些?
(1)定义法:(这条不实用)
(2)平行公理的推论:若a//b,b//c,则a//c.
(3)判定方法1:同位角相等,两直线平行.
(4)判定方法2:内错角相等,两直线平行.
(5)判定方法3:同旁内角互补,两直线平行.
复习回顾
2.下面的题你会吗?如果会,请说说你的理由.
a
b
c
1
2
若∠1=∠2,则b c.
若∠1=∠2,则 // .
若∠ =∠ ,则AB//DC.
C
A
B
D
1
2
3
//
AD
BC
2
3
复习回顾
枕木
铁轨
在铺设铁轨时,两条直轨必须是互相平行的.
思考:如何确定两条直轨是否平行?
问题引入
(3)如果∠D+∠DFE=180°,可以判断哪两条直线平行?为什么?
例1:如图,E是AB上一点,F是DC上一点,G是BC延长线上一点.
(1)如果∠B=∠DCG,可以判断哪两条直线平行?为什么?
(2)如果∠D=∠DCG,可以判断哪两条直线平行?为什么?
A
B
D
C
E
F
G
解 : (1)AB//CD, 同位角相等,两直线平行;
(2)AD//BC, 内错角相等,两直线平行;
(3)AD//EF, 同旁内角互补,两直线平行.
典例解析
例2:如图,已知 ∠1=75o , ∠2 =105o ,问:AB与CD平行吗?为什么?
A
C
1
4
2
3
B
D
5
F
E
75o
105o
还有其它解法吗?
典例解析
A
C
1
4
2
3
B
D
5
F
E
75o
105o
典例解析
例2:如图,已知 ∠1=75o , ∠2 =105o ,问:AB与CD平行吗?为什么?
例3: 如图,∠1=∠2,能判断AB∥DF吗?为什么?
?
?
?
?
?
?
F
D
C
A
B
E
1
2
解:不能.
添加∠CBD=∠EDB
内错角相等,两直线平行
若不能判断AB∥DF,你认为还需要再添加的一个条件是什么呢?写出这个条件,并说明你的理由.
典例解析
思考:在同一平面内,两条直线垂直于同一条直线,这两条直线平行吗?为什么?
a
b
c
b⊥a,c⊥a
b∥c
?
猜想:垂直于同一条直线的两条直线平行.
知识精讲
在同一平面内,b⊥a,c⊥a,试说明:b∥c.
a
b
c
1
2
∵b⊥a ,c ⊥a (已知)
∴b∥c
(同位角相等,两直线平行)
∴∠1= ∠2 = 90°
(垂直的定义)
解法1:如图,
知识精讲
∵ b⊥a,c⊥a(已知)
∴∠1=∠2=90°(垂直定义)
∴b∥c(内错角相等,两直线平行)
a
b
c
1
2
解法2:如图,
在同一平面内,b⊥a,c⊥a,试说明:b∥c.
知识精讲
∵ b⊥a,c⊥a(已知)
∴∠1=∠2=90°(垂直定义)
∴ ∠1+∠2=180°
∴b∥c(同旁内角互补,两直线平行)
a
b
c
1
2
解法3:如图,
在同一平面内,b⊥a,c⊥a,试说明:b∥c.
知识精讲
同一平面内,垂直于同一条直线的两条直线平行.
几何语言:
∵ b⊥a,c⊥a(已知)
∴b∥c(同一平面内,垂直于同一条直线的两条
直线平行.)
a
b
c
1
2
知识精讲
例4:如图,为了说明示意图中的平安大街与长安街是互相平行的,在地图上量得∠1=90°,你能通过度量图中已标出的其他的角来验证这个结论吗?说出你的理由.
解:方法1:测出∠3=90°,
理由是同位角相等,两直线平行.
方法2:测出∠2=90°,
理由是同旁内角互补,两直线平行.
方法3:测出∠5=90°,
理由是内错角相等,两直线平行.
方法4:测出∠2,∠3,∠4,∠5中任意一个角为90°,
理由是同一平面内,垂直于同一直线的两直线平行.
典例解析
若∠1=120°,∠3=__,即∠1+ ∠3=180°,则AB//CD.
( )
A
B
C
D
E
F
1
2
3
1.如图,直线AB,CD被直线EF所截 .若∠1=120°,∠2= __ ,则AB//CD.( )
内错角相等,两直线平行
120°
60°
同旁内角互补,两直线平行
达标检测
2.用两块相同的三角板按如图所示的方式作平行线,你能解释其中的道理吗?
解:内错角相等,两直线平行
达标检测
3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是( )
A.第一次向右拐50?,第二次向左拐130?
B.第一次向左拐30?,第二次向右拐30?
C.第一次向右拐50?,第二次向右拐130?
D.第一次向左拐50?,第二次向左拐130?
B
达标检测
解析:根据平行线的判定定理即可求得答案.
①∵∠B+∠BCD=180°,∴AB∥CD;
②∵∠1=∠2,∴AD∥BC;
③∵∠3=∠4,∴AB∥CD;
④∵∠B=∠5,∴AB∥CD.
∴能得到AB∥CD的条件是①③④.故选C.
4.如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.其中能判定AB∥CD的条件有( )
A.1个 B.2个 C.3个 D.4个
C
达标检测
5.如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.
解:过点F向左作FQ,使∠MFQ=∠2=50°,
则∠NFQ=∠MFN-∠MFQ=90°-50°=40°, 所以AB∥FQ.
又因为∠1=140°,
所以∠1+∠NFQ=180°,
所以CD∥FQ,所以AB∥CD.
Q
达标检测
6.有一块木板,身边只有直尺和量角器,我们怎样才能知道它上下边缘是否平行?
达标检测
1
2
方案1:
40°
40°
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
达标检测
40°
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
1
2
40°
方案2:
达标检测
140°
40°
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
90
120
150
180
60
30
G R E A T 。PROTRACTOR
0
0
10
20
50
40
30
60
70
80
90
100
110
120
130
140
150
160
170
180
10
20
40
50
70
80
100
110
130
140
160
170
1
2
方案3:
达标检测
1.同位角相等, 两直线平行.
2.内错角相等, 两直线平行.
3.同旁内角互补, 两直线平行.
4.平行于同一直线的两直线平行.
5.同一平面内, 垂直于同一直线的两直线平行.
6.平行线的定义.
判定两条直线是否平行的方法有:
小结梳理