_2020--2021学年苏科版七年级下册数学 第七章 平面的图形认识(word版含解析)

文档属性

名称 _2020--2021学年苏科版七年级下册数学 第七章 平面的图形认识(word版含解析)
格式 doc
文件大小 193.5KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2021-03-25 07:13:54

图片预览

文档简介

苏科版七年级下册数学 第七章 平面的图形认识(二)
解答题专项培优集训(三)
1.课上教师呈现一个问题:
已知:如图1,AB∥CD,EF⊥AB于点O,FG交CD于点P,当∠1=30°时,求∠EFG的度数.
甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:
甲同学辅助线的做法和分析思路如下:
辅助线:过点F作MN∥CD.
分析思路:
①欲求∠EFG的度数,由图可知只需转化为求∠2和∠3的度数之和;
②由辅助线作图可知,∠2=∠1,从而由已知∠1的度数可得∠2的度数;
③由AB∥CD,MN∥CD推出AB∥MN,由此可推出∠3=∠4;
④由已知EF⊥AB,可得∠4=90°,所以可得∠3的度数;
⑤从而可求∠EFG的度数.
(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.
辅助线:   
分析思路:
(2)请你根据丙同学所画的图形,求∠EFG的度数.
2.如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,∠BOD=20°,求∠COE的度数.
3.如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,
(1)问直线EF与AB有怎样的位置关系?加以证明;
(2)若∠CEF=70°,求∠ACB的度数.
4.如图,AB∥DG,AD∥EF.
(1)试说明:∠1+∠2=180°;
(2)若DG是∠ADC的平分线,∠2=138°,求∠B的度数.
5.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是过点P作PE∥AB,通过平行线的性质来求∠APC.
(1)按照小明的思路,求∠APC的度数;
(2)问题迁移:如图2,AB∥CD,点P在射线ON上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P不在B、D两点之间运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
6.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,求∠BOC的度数.
7.(1)已知:如图1,直线AB∥CD,点E是AB、CD之间的一点,连接BE、DE得到∠BED.求证:∠BED=∠B+∠D,(提示:过E作EF平行AB)
(2)已知:直线AB∥CD,直线MN分别与AB、CD交于点E、F.
①如图2,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;
②如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2.求证:∠FG1E+∠G2=180°.
8.已知AM∥CN,点B为平面内一点,AB⊥BC于B.
(1)如图1,直接写出∠A和∠C之间的数量关系   ;
(2)如图2,过点B作BD⊥AM于点D,∠BAD与∠C有何数量关系,并说明理由;
(3)如图3,在(2)问的条件下,点E,F在DM上,连接BE,BF,CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠EBC的度数.
9.如图所示,直线AB,EF交于点O,OD平分∠BOF,CO⊥EF于点O,∠AOE=70°,求∠COD的度数.
10.已知:如图,直线AB∥CD,直线EF与直线AB,CD分别交于点G,H;GM平分∠FGB,∠3=60°.求∠1的度数.
11.如图,直线AB、CD相交于点O,OE平分∠AOC,OE⊥OF,∠AOE=32°.
(1)求∠DOB的度数;
(2)OF是∠AOD的角平分线吗?为什么?
12.如图,直线AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,求∠AED的度数.
13.已知:如图,△ABC中,AD⊥BC于点D,点E在AB上,EF⊥BC于点F,∠1=∠2,求证:DE∥AC.
14.如图所示,已知AD∥BC,BE平分∠ABC,∠A=110°.求∠ADB的度数.
15.如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.
(1)说明:∠AOD=2∠COE;
(2)若∠AOC=50°,求∠EOF的度数;
(3)若∠BOF=15°,求∠AOC的度数.
参考答案
1.解:(1)辅助线:过点P作PN∥EF交AB于点N.
分析思路:
①欲求∠EFG的度数,由辅助线作图可知,∠EFG=∠NPG,因此,只需转化为求∠NPG的度数;
②欲求∠NPG的度数,由图可知只需转化为求∠1和∠2的度数和;
③又已知∠1的度数,所以只需求出∠2的度数;
④由已知EF⊥AB,可得∠4=90°;
⑤由PN∥EF,可推出∠3=∠4;AB∥CD可推出∠2=∠3,由此可推∠2=∠4,所以可得∠2的度数;
⑥从而可以求出∠EFG的度数.
(2)如图,过点O作ON∥FG ,
∵ON∥FG,
∴∠EFG=∠EON∠1=∠ONC=30°,
∵AB∥CD,
∴∠ONC=∠BON=30°,
∵EF⊥AB,
∴∠EOB=90°,
∴∠EFG=∠EON=∠EOB+∠BON=90°+30°=120°.
2.解:∵AB,CD相交于点O,∠BOD=20°,
∴∠AOC=∠BOD=20°,
∵OE⊥AB,
∴∠AOE=90°,
∴∠COE=∠AOE﹣∠AOC﹣=90﹣20=70°.
3.解:(1)EF和AB的关系为平行关系.理由如下:
∵CD∥AB,∠DCB=70°,
∴∠DCB=∠ABC=70°,
∵∠CBF=20°,
∴∠ABF=∠ABC﹣∠CBF=50°,
∵∠EFB=130°,
∴∠ABF+∠EFB=50°+130°=180°,
∴EF∥AB;
(2)∵EF∥AB,CD∥AB,
∴EF∥CD,
∵∠CEF=70°,
∴∠ECD=110°,
∵∠DCB=70°,
∴∠ACB=∠ECD﹣∠DCB,
∴∠ACB=40°.
4.解:(1)∵AD∥EF,
∴∠BAD+∠2=180°,
∵AB∥DG,
∴∠BAD=∠1,
∴∠1+∠2=180°.
(2)∵∠1+∠2=180°且∠2=138°,
∴∠1=42°,
∵DG是∠ADC的平分线,
∴∠CDG=∠1=42°,
∵AB∥DG,
∴∠B=∠CDG=42°.
5.(1)解:过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=110°.
(2)∠APC=∠α+∠β,
理由:如图2,过P作PE∥AB交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠α=∠APE,∠β=∠CPE,
∴∠APC=∠APE+∠CPE=∠α+∠β;
(3)如图所示,当P在BD延长线上时,
∠CPA=∠α﹣∠β;
如图所示,当P在DB延长线上时,
∠CPA=∠β﹣∠α.
6.解:∵EO⊥AB,
∴∠AOE=90°,
∵∠EOD=50°,
∴∠ADO=90°+50°=140°,
∴∠BOC=140°.
7.(1)证明:如图1过点E作EF∥AB,
则有∠BEF=∠B.
∵AB∥CD,
∴EF∥CD.
∴∠FED=∠D.
∴∠BEF+∠FED=∠B+∠D.
即∠BED=∠B+∠D;
(2)①解:如图2所示,猜想:∠EGF=90°;
证明:由材料中的结论得∠EGF=∠BEG+∠GFD,
∵EG、FG分别平分∠BEF和∠EFD,
∴∠BEF=2∠BEG,∠EFD=2∠GFD,
∵BE∥CF,
∴∠BEF+∠EFD=180°,
∴2∠BEG+2∠GFD=180°,
∴∠BEG+∠GFD=90°,
∵∠EGF=∠BEG+∠GFD,
∴∠EGF=90°;
②解法一:
证明:如图3,过点G1作G1H∥AB,
∵AB∥CD,∴G1H∥CD,
由结论可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,
∴∠3=∠G2FD,
∵FG2平分∠EFD,
∴∠4=∠G2FD,
∵∠1=∠2,
∴∠G2=∠2+∠4,
∵∠EG1F=∠BEG1+∠G1FD,
∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,
∵AB∥CD,
∴∠BEF+∠EFD=180°,
∴∠EG1F+∠G2=180°.
解法二:证明:由结论可得∠G2=∠1+∠G2FD
∵FG2平分∠EFD,
∴∠EFG2=∠G2FD,
∵∠EG1F+∠EG1 G2=∠EG1F+∠2+∠EFG2=180°,
∴∠EG1 G2=∠2+∠EFG2,
∵∠1=∠2,
∴∠G2=∠EG1 G2,
∴∠EG1F+∠G2=180°
8.解:(1)如图1,AM与BC的交点记作点O,
∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°;
(2)如图2,过点B作BG∥DM,
∵BD⊥AM,
∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,BG∥AM,
∴CN∥BG,
∴∠C=∠CBG,
∴∠ABD=∠C,
∴∠C+∠BAD=90°;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,则
∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=5∠DBE=5α,
∴∠AFC=5α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=5α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得
(2α+β)+5α+(5α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②联立方程组,解得α=9°,
∴∠ABE=9°,
∴∠EBC=∠ABE+∠ABC=9°+90°=99°.
故答案为:∠A+∠C=90°.
9.解:∵∠BOF=∠AOE=70°
又∵OD平分∠BOF,
∴,
∵CO⊥EF,
∴∠COF=90°,
∴∠COD=∠COF﹣∠DOF=90°﹣35°=55°.
10.解:∵EF与CD交于点H,(已知),
∴∠3=∠4.(对顶角相等),
∵∠3=60°,(已知),
∴∠4=60°.(等量代换),
∵AB∥CD,EF与AB,CD交于点G,H,(已知),
∴∠4+∠FGB=180°.(两直线平行,同旁内角互补),
∴∠FGB=120°.
∵GM平分∠FGB,(已知),
∴∠1=60°.(角平分线的定义).
11.解:(1)∵OE平分∠AOC,
∴∠AOC=2∠AOE=64°,
∵∠DOB与∠AOC是对顶角,
∴∠DOB=∠AOC=64°;
(2)∵OE⊥OF,
∴∠EOF=90°,
∴∠AOF=∠EOF﹣∠AOE=58°,
∵∠AOD=180°﹣∠AOC=116°,
∴∠AOD=2∠AOF,
∴OF是∠AOD的角平分线.
12.解:∵AB∥CD,
∴∠BAE+∠AED=180°,∠BAC+∠C=180°,
∵∠C=50°,
∴∠BAC=130°,
∵AE平分∠BAC,
∴∠BAE=BAC=65°,
∴∠AED=180°﹣∠BAE=115°.
13.证明:∵AD⊥BC于点D,EF⊥BC于点F,
∴AD∥EF.
∴∠1=∠3.
∵∠1=∠2,
∴∠2=∠3.
∴DE∥AC.
14.解:如图所示:
∵AD∥BC,
∴∠A+∠ABC=180°,∠ADB=∠CBD,
又∵∠A=110°,
∴∠ABC=180°﹣110°=70°,
又∵BE平分∠ABC,
∴∠CBD=
∴∠CBD=×70°=35°
∴∠ADB=35°.
15.解:(1)∵OE平分∠COB,
∴∠COE=∠COB,
∵∠AOD=∠COB,
∴∠AOD=2∠COE;
(2)∵∠AOC=50°,
∴∠BOC=180°﹣50°=130°,
∴∠EOC=∠BOC=65°,
∴∠DOE=180°﹣∠EOC=180°﹣65°=115°,
∵OF平分∠DOE,
∴∠EOF=∠DOE=57.5°;
(3)设∠AOC=∠BOD=α,则∠DOF=α+15°,
∴∠EOF=∠DOF=α+15°,
∴∠EOB=∠EOF+∠BOF=α+30°,
∴∠COB=2∠EOB=2α+60°,
而∠COB+∠BOD=180°,即,3α+60°=180°,
解得,α=40°,
即,∠AOC=40°.