7.2.1 复数的加、减运算及其几何意义
(建议用时:40分钟)
一、选择题
1.若(-3a+bi)-(2b+ai)=3-5i,a,b∈R,则a+b=( )
A.
B.-
C.-
D.5
2.若复数z满足z+(3-4i)=1,则z的虚部是( )
A.-2
B.4
C.3
D.-4
3.若z1=2+i,z2=3+ai(a∈R),且z1+z2所对应的点在实轴上,则a的值为( )
A.3
B.2
C.1
D.-1
4.在平行四边形ABCD中,对角线AC与BD相交于点O,若向量,对应的复数分别是3+i,-1+3i,则对应的复数是( )
A.2+4i
B.-2+4i
C.-4+2i
D.4-2i
5.若z∈C,且|z+2-2i|=1,则|z-2-2i|的最小值是( )
A.2
B.3
C.4
D.5
二、填空题
6.已知复数z1=a2-3-i,z2=-2a+a2i,若z1+z2是纯虚数,则实数a=________.
7.在复平面内,O是原点,,,对应的复数分别为-2+i,3+2i,1+5i,则对应的复数为________.
8.设z1=x+2i,z2=3-yi(x,y∈R),且z1+z2=5-6i,则z1-z2=________.
三、解答题
9.计算:
(1)(2-i)+(-3+5i)+(4+3i);
(2)4-(5+12i)-i;
(3)若z-(-3+5i)=-2+6i,求复数z.
10.在复平面内,A,B,C分别对应复数z1=1+i,z2=5+i,z3=3+3i,以AB,AC为邻边作一个平行四边形ABDC,求D点对应的复数z4及AD的长.
11.(多选题)已知i为虚数单位,下列说法中正确的是( )
A.若复数z满足|z-i|=,则复数z对应的点在以(1,0)为圆心,为半径的圆上
B.若复数z满足z+|z|=2+8i,则复数z=15+8i
C.复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模
D.复数z1对应的向量为,复数z2对应的向量为,若|z1+z2|=|z1-z2|,则⊥
12.设z∈C,且|z+1|-|z-i|=0,则|z+i|的最小值为( )
A.0
B.1
C.
D.
13.若复数z满足z=|z|-3-4i,则z=________.
14.在复平面内,A,B,C三点所对应的复数分别为1,2+i,-1+2i,其中i为虚数单位.
(1)求,,对应的复数;
(2)判断△ABC的形状;
(3)求△ABC的面积.
15.设z为复数,且|z|=|z+1|=1,求|z-1|的值.
参考答案
1.B [(-3a+bi)-(2b+ai)=(-3a-2b)+(b-a)i=3-5i,所以解得a=,b=-,故有a+b=-.]
2.B [z=1-(3-4i)=-2+4i,故选B.]
3.D [z1+z2=2+i+3+ai=(2+3)+(1+a)i=5+(1+a)i.∵z1+z2所对应的点在实轴上,∴1+a=0,∴a=-1.]
4.D [依题意有==-,而(3+i)-(-1+3i)=4-2i,即对应的复数为4-2i.故选D.]
5.B [设z=x+yi,则由|z+2-2i|=1得(x+2)2+(y-2)2=1,表示以(-2,2)为圆心,以1为半径的圆,如图
所示,则|z-2-2i|=表示圆上的点与定点(2,2)的距离,数形结合得|z-2-2i|的最小值为3.]
6.3 [由条件知z1+z2=a2-2a-3+(a2-1)i,又z1+z2是纯虚数,所以
解得a=3.]
7.4-4i [=-=-(+),对应的复数为3+2i-(-2+i+1+5i)=(3+2-1)+(2-1-5)i=4-4i.]
8.-1+10i [∵z1+z2=5-6i,∴(x+2i)+(3-yi)=5-6i,
∴即
∴z1=2+2i,z2=3-8i,∴z1-z2=(2+2i)-(3-8i)=-1+10i.]
9.[解] (1)(2-i)+(-3+5i)+(4+3i)=(2-3+4)+(-1+5+3)i=3+7i.
(2)4-(5+12i)-i=(4-5)+(-12-1)i=-1-13i.
(3)法一:设z=x+yi(x,y∈R),因为z-(-3+5i)=-2+6i,所以(x+yi)-(-3+5i)=-2+6i,
即(x+3)+(y-5)i=-2+6i,因此
解得于是z=-5+11i.
法二:由z-(-3+5i)=-2+6i
可得z=-2+6i+(-3+5i),
所以z=(-2-3)+(6+5)i=-5+11i.
10.[解] 如图所示.
对应复数z3-z1,
对应复数z2-z1,
对应复数z4-z1.
由复数加减运算的几何意义,得=+,
∴z4-z1=(z2-z1)+(z3-z1),
∴z4=z2+z3-z1=(5+i)+(3+3i)-(1+i)=7+3i.
∴AD的长为||=|z4-z1|=|(7+3i)-(1+i)|=|6+2i|=2.
11.CD [满足|z-i|=的复数z对应的点在以(0,1)为圆心,为半径的圆上,A错误;在B中,设z=a+bi(a,b∈R),则|z|=.由z+|z|=2+8i,得a+bi+=2+8i,
∴解得∴z=-15+8i,B错误;由复数的模的定义知C正确;由|z1+z2|=|z1-z2|的几何意义知,以,为邻边的平行四边形为矩形,从而两邻边垂直,D正确.故选CD.]
12.C [由|z+1|=|z-i|知,在复平面内,复数z对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y=-x,而|z+i|表示直线y=-x上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y=-x的距离,即为.]
13.-4i [设复数z=a+bi(a,b∈R),
则所以所以z=-4i.]
14.[解] (1)对应的复数为2+i-1=1+i,
对应的复数为-1+2i-(2+i)=-3+i,
对应的复数为-1+2i-1=-2+2i.
(2)∵||=,||=,||==2,
∴||2+||2=||2,∴△ABC为直角三角形.
(3)S△ABC=××2=2.
15.[解] 设z=a+bi(a,b∈R),则z+1=(a+1)+bi,
又|z|=|z+1|=1,所以
即解得
故|z-1|=|(a+bi)-1|=|(a-1)+bi|==eq
\r(\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2)-1))+\f(3,4))=.