新课标人教版3-4第15章相对论简介(全章教案4套+综合测试题1套共5套)

文档属性

名称 新课标人教版3-4第15章相对论简介(全章教案4套+综合测试题1套共5套)
格式 zip
文件大小 204.7KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2012-02-02 21:07:58

文档简介

15.3 狭义相对论的其他结论
【教学目标】
(一)知识与技能
1.知道相对论的速度变换公式。
2.知道相对论质量。
3.知道爱因斯坦质能方程。
(二)过程与方法
培养应用相对论时空观分析研究问题的能力。
(三)情感、态度与价值观
激发学生对相对论力学的探索热情。
【教学重点】三个结论的理解应用。
【教学难点】能辨清在哪些情况下要考虑相对论效应,哪些情况下不必考虑。
【教学方法】在教师的引导下,共同分析、研究得出结论。
【教学用具】投影仪及投影片。
【教学过程】
(一)引入新课
师:在第一节内容的学习中,遗留一个问题,那就是经典物理中速度叠加原理与光速不变之间的矛盾,显然经典的速度叠加原理在高速情况下是不适用的,下面我们来认识相对论的速度叠加原理
(二)进行新课
1.相对论的速度变换公式
[投影]如图,高速火车对地速度为v,车上小球相对于车的速度为u′,则地上观察者观察到它的速度为u
则有:u=
注意这一公式仅适用于u′与v在一直线上的情况,当u′与v相反时,u′取负值.
下面请大家计算下列三种情况下地面观察者看到的球速度,并比较u与u′+v以及u与c的大小关系
[投影问题]
(1)当u′= v=c时
(2)当u′=c v=c时
(3)当u′=-c v=时
(学生基本能准确快速地代入运算出结果,教师引导学生分析比较)
生1:第一问中u=c,u′+v=c,可见u<(u′+v)并且u<c。由此可以看出,合速度比(u′+v)要小,这与经典速度合成完全不同。
生2:第二问中u=cu′+v=2c,与上面同学分析是一致的.
生3:第三问中u=-c,表示合速度大小仍然为c,方向与v相反,从二、三两个结果可以看出,u′=c时,不论v如何取值,在什么参考系中观察,光速都是c.
师:三位同学分析得很好。对于低速物体u′与v与光速相比很小时,根据公式u=可知u′v<2.相对论质量
师:我们先来解一道力学题。
[投影]质量m=0.5 kg的小球,在F=100 N的合力作用下由静止开始加速,求经2×106s,它的速度变为多少?
生:据F=ma可求出a=200 m/s2,再据v2=at求得经2×106 s时,它的速度为4×108 m/s。
师:大家觉得这个结果可能吗?
生:不可能,前面我们已经看到,物体的速度不能超过光速3×108 m/s。
师:问题出在哪里呢?
生:可能是物体的质量发生了变化,随速度的增加而改变。
师:这一猜想很有道理。事实上,严格的论证已经证实了这一点。如果物体静止时质量为m0,以速度v运动时质量为m,则有
m=
由公式可以看出随v的增加,物体的质量随之增大。
3.质能方程
师:根据前面的相对论质量,爱因斯坦质能联系方程应该变为E=mc2=.
物体运动的动能为运动时能量和静止时能量E0之差:
Ek=E-E0
物体低速运动时,<<1
E=≈[1+()2]m0c2(请同学们课后查阅有关数学公式)
动能Ek=E-E0≈()2m0c2=m0v2
这就是经典力学中我们熟悉的动能表达式。由此可以看到,牛顿力学是v<(三)课堂总结、点评
本节我们通过对相对论速度变换公式、相对论质量公式和质能方程的学习,进一步掌握了相对论原理在高速状态下的应用,激发了对相对论力学的探索热情。
(四)课余作业
完成P116“问题与练习”的题目。课下阅读课本内容。15.1 相对论的诞生
【教学目标】
(一)知识与技能
1.理解经典的相对性原理以及光的传播与经典的速度合成法则之间的矛盾。
2.理解狭义相对论的基本假设。
(二)过程与方法
通过学习,提高分析物理现象与定理定律矛盾的能力。
(三)情感、态度与价值观
通过对本节内容的学习,认识科学假设在科学发现上的重要作用,进一步理解逻辑推理的力量。
【教学重点】狭义相对论的两个基本假设。
【教学难点】光速不变原理。
【教学方法】通过在具体实例中提出问题、揭示矛盾、引发学生思考,然后通过相对论假设进行逻辑推理,得出结论。
【教学用具】投影仪及投影片。
【教学过程】
(一)引入新课
师:请同学们回忆一下什么是惯性系?什么是非惯性系?举例说明。
生:牛顿运动定律能够成立的参考系叫惯性系,匀速运动的汽车轮船等作为参考系就是惯性系。牛顿运动定律不成立的参考系称为非惯性系。例如我们坐在加速的车厢里,以车厢为参考系观察路边的树木房屋向后方加速运动,根据牛顿运动定律,房屋树木应该受到不为零的合外力作用,但事实上没有,也就是牛顿运动定律不成立.这里加速的车厢就是非惯性系。
师:很好,根据惯性系的概念,不难推出,相对于一个惯性系做匀速运动的另一个参考系也是惯性系。
(二)进行新课
1.经典的相对性原理
师:下面我们来研究一个简单的力学问题。(投影问题)
如图,在列车车厢的光滑水平面上有一个质量为m=0.5 kg的小球,正随车厢一起以20 m/s的速度匀速前进.现在给小球一个水平向前的F=5 N的拉力作用,求经10 s时,车厢里的观察者和地面的观察者看到小球的速度分别是多少?
学生分析:对车上的观察者
物体初速度v0=0
加速度a==10 m/s2
10 s时速度v1=at=10 m/s
对地上的观察者
方法一:物体初速度v0=20 m/s
加速度相同a==10 m/s2
10 s末速度v2=v0+at=30 m/s
方法二:根据速度合成法则
v2=v1+v0=(10+20) m/s=30 m/s
师:通过这个例子大家看到,在两个惯性系中,虽然观察到的结果并不相同,一个是10 m/s,另一个是30 m/s,但我们却应用了同样的运动定律和速度合成法则,也就是说,我们相信:力学规律在任何惯性系中都是相同的。这就是伽利略相对性原理。在一个惯性参考系内的任何力学实验都无法判断这个参考系是否相对于另一个参考系做匀速运动或者说任何参考系都是平权的。
(教师还可引导学生举例说明相对性原理,并进行讨论)
2.相对性原理与电磁规律
师:请大家看课本图15.1-1,考虑几个问题:
(1)参考系O′相对于参考系O静止时,人看到的光速应是多少?
(2)参考系O′相对于参考系O以速度v向右运动,人看到的光速应是多少?
(3)参考系O′相对于参考系O以速度v向左运动,人看到的光速又是多少?
生:第一种情况人看到的光速应是c,第二种情况应是c+v,第三种情况应是c-v。
师:说说你们判断依据。
生:根据速度合成的法则。
师:大家认为对吗?
(学生一致认为正确)
师:如果这个法则有问题呢?
(学生沉默)
师:实践是检验真理的标准,我们是不是可以通过实验来检验呢?回答是肯定的,这就是著名的麦克尔逊测定光速的实验,同学们应该有印象。
生:不论光源和观察者怎样运动,光速都是相同的。
师:这与我们从速度合成法则推导的结论发生了矛盾.问题出在哪里呢?
3.狭义相对论的两个基本假设
师:这一矛盾,不仅对我们的推理给予否定,还对麦克斯韦电磁场理论提出了挑战:要么否定特殊参考系O的存在,要么放弃麦克斯韦电磁场理论.爱因斯坦选择了后者,提出了两条假设:(投影)
(1)在不同的惯性系中,一切物理规律都是相同的。(爱因斯坦相对性原理)
(2)真空中的光速在不同的惯性参考系中都是相同的。(光速不变原理)
生:为什么这两个结论被称为假设呢?
师:虽然这两个假设可以由麦克尔逊实验直接推出,但这毕竟是有限的几次实验,只有用这个假设得出大量的结论与事实相符时,它们才能成为真正意义上的原理,这才是科学的态度。
(三)课堂总结、点评
本节课我们通过复习惯性系概念,理解了经典的相对性原理。
通过光速实验引起的困难,理解了光的传播与经典理论的矛盾。
学习了狭义相对论的两个基本假设。
(四)课余作业
完成P107“问题与练习”的题目。第15章 相对论简介 单元测试
一、选择题(本题有7个小题。每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确)
1.下列属于广义相对论结论的是 ( )
A.尺缩效应
B.时间变慢
C.光线在引力场中弯曲
D.物体运动时的质量比静止时大
2.下列属于狭义相对论结论的是 ( )
A.尺缩效应
B.时间变慢
C.光线在引力场中弯曲
D.水星近日点的进动
3.如果宇航员驾驶一艘宇宙飞船,以接近光速的速度朝某一星球飞行,他是否可以根据下列变化感觉到自己在运动 ( )
A.身体质量在减小
B.心脏跳动变慢
C.身体质量在增加
D.永远不可能由自身的变化知道他是否在运动
4.惯性系S中有一边长为l的正方形(如图A所示),从相对S系沿x方向以接近光速匀速飞行的飞行器上测得该正方形的图象是 ( )
5. 1905年爱因斯坦提出了狭义相对论,狭义相对论的出发点是以两条基本假设为前提的,这两条基本假设是( )
A、同时的绝对性与同时的相对性
B、运动的时钟变慢与运动的尺子缩短
C、时间间隔的绝对性与空间距离的绝对性
D、相对性原理与光速不变原理
6.为了直接验证爱因斯坦狭义相对论中著名的质能方程,E=mc2科学家用中子轰击硫原子,分别测出原子捕获中子前后质量的变化以及核反应过程放出的能量,然后进行比较,精确验证了质能方程的正确性。设捕获中子前的原子质量为m1,捕获中子后的原子质量为m2,被捕获的中子质量为m3,核反应过程放出的能量为ΔE,则这一实验需验证的关系式是 ( )
A. ΔE=(m1-m2-m3)c2 B. ΔE=(m1+m3-m2)c2
C. ΔE=( m2-m1-m3)c2 D. ΔE=( m2-m1+m3)c2
7、如图所示,按照狭义相对论的观点,火箭B是“追赶”光的;火箭A是“迎着”光飞行的,若火箭相对地面的速度为,则两火箭上的观察者测出的光速分别为 ( )
A.,
B.,
C.,
D.无法确定
二、填空题
8.按照相对论和基本力学规律可以推导出物体质量与能量之间的关系为________,这就是著名的______ __。
9.广义相对论认为,在任何参考系中,物理规律都是_____________。
10.设宇宙射线粒子的能量是其静止能量的k倍.则粒子运动时的质量等于其静止质量的 倍,粒子运动速度是光速的 倍。
11.经过证明,物体运动的质量m与静止时的质量m0_____________(填“相同”或“不相同”)两个质量满足的关系为_______________________。从上式可以看出,当物体的速度很大时(接近光速),物体的质量明显____________静止时的质量。
三、计算
12.星际火箭以0.8c的速率飞行,其运动质量为静止质量的多少倍?
13.冥王星绕太阳公转的线速率为4.83×103 m/s,求其静止质量为运动质量的百分之几?
14.北京正负电子对撞机中电子的动能为2800MeV,求此电子的速率比光速小多少?
15.一立方体物体静止时的体积为V,质量为m,当该物体沿一条棱以速度v运动时,它的体积变为多少?
16.有两火箭A、B沿同一直线相向运动,测得二者相对于地球的速度大小分别为0.9c和0.8c,求在A上测B相对于A的运动速度。
【参考答案】
一、选择题(本题有7个小题。每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确)
1、C 2、AB 3、D 4、C 5、D 6、B 7、B
二、填空题
8、E=mc2,质能方程
9、相同的
10、k;
11、不相同,,大于
三、计算论述题
12、倍
13、99.9%
14、5m/s
15、
16、0.998c
试题综述:出题比较简单,原因在于高考对于此部分的要求不是很高,都是一级要求,即了解和认识即可。
x
y
O
l
l
A
x
y
O
l
l
B
x
y
O
l
l
C
x
y
O
l
l
D
A
B
光15.2 时间和空间的相对性
【教学目标】
(一)知识与技能
1.理解“同时”的相对性。
2.通过推理,知道时间间隔的相对性和长度的相对性。
3.通过对两个结论的分析认识时间和空间是不能脱离物质而单独存在的。
(二)过程与方法
1.通过时间间隔相对性和长度相对性的推导,培养逻辑推理能力。
2.通过建立相对论时空观,提高学生认识物质世界的能力。
(三)情感、态度与价值观
培养学生对逻辑推理形成的结论要有一个科学的接受态度。
【教学重点】同时的相对性,长度的相对性,时间间隔的相对性。
【教学难点】相对论的时空观。
【教学方法】在教师的引导下,通过对具体实例的分析,建立模型、形成结论、形成理论,并在应用中加以巩固。
【教学用具】投影仪及投影片。
【教学过程】
(一)引入新课
师:上一节课我们学习了狭义相对论的两个假设。请同学们回忆一下这两个假设的内容。
生:在不同惯性参照系中,一切物理规律都是相同的;真空中的光速在不同惯性系中都是相同的。
师:根据这两个假设,我们可以得出那些推论呢?这节课我们继续来学习狭义相对论的有关知识。
(二)进行新课
1.“同时”的相对性
师:首先我们来认识一下“事件”的概念,在这里我们说的事件可以指一个婴儿的诞生,一个光子与观测仪器的撞击或闪电打击地面等等.请大家再举几个例子。
生:光从光源发出,宇宙中某个星体的爆发,一个车辆的启动等都是“事件”。
师:下面我们通过一个实例分析,来看看经典物理和相对论对同时的理解有何不同。
[投影问题]
车厢长为L,正以速度v匀速向右运动,车厢底面光滑,现有两只完全相同的小球,从车厢中点以相同的速率v0分别向前后匀速运动,(相对于车厢),问(1)在车厢内的观察者看来,小球是否同时到达两壁?(2)在地上的观察者看来两球是否同时到达两壁?
分析:在车上的观察者看来,
A球经时间tA==
B球经时间tB==
因此两球同时到达前后壁。
在经典物理学家看来,同时发生的两件事在任何参照系中观察,结果都是同时的,两球也应同时到达前后壁.这是我们在日常生活中得到的结论。
师:如果把上述事件换成两列光的传播,情况如何呢?
(引导学生,从经典观点和光速不变原理两方面分析)
生:在车上的观察者看来,闪光同时到达前后壁,在地上的观察者看来,闪光先到达后壁.
师:为什么呢?
生:根据爱因斯坦相对性原理,在不同参考系中一切物理规律都是相同的,这里匀速运动规律也一样,据s=ct得t=,车上观察者看来s相同,c也一样,所以t相同,而对地面的观察者,光向后位移s小,而光速仍然不变,所以向后运动光需要较短时间到达后壁。
师:分析得不错,由此看来,根据爱因斯坦相对性原理和光速不变原理,我们自然会得出“同时是相对的”这样一个原理,也就是说,在一个参考系中看来“同时”的,在另一个参考系中却可能“不同时”。
师:那么为什么我们平时不能观察这种现象呢?
生:因为火车速度相对于光速来说太小,在光传播的短时间内,火车位移不大,我们不能发现这么短的时间差.如果火车速度接近光速,这一现象一定很明显。
师:是的,看来经典的时间观动摇了,相对论给我们展示了高速运动状态下全新的世界。
2.长度的相对性
师:下面我们来讨论在不同参考系中测量一个杆的长度结果会如何。
投影下图。
师:甲图中是一个刻度尺测出的静止的杆的长度,大家看是多少?
生:1.2 m
师:怎么求出的呢?
生:拿N点坐标9.2 m减M点坐标8 m得到的。
师:乙图中尺仍然静止,杆水平向右匀速运动,我们应该怎么算杆长?
生:MN长或M′N′长度。
师:其实这里你是用某时刻N、M坐标差值或另一时刻N′、M′坐标差值得到的.如果有人用N′,M的坐标差值算出杆长是9.7 m-8 m=1.7 m显然是没有意义的,它不能代表杆的长度.因此我们要测量这一杆长,就必须“同时”读出杆两端坐标才行。现在的问题是不同参考系中“同时是相对的”。
师:请大家看课本图15.2-3,地面上的人看到杆的M、N两端发出的光同时到达他的眼睛,他读出N、M的坐标之差为l,即地上的观察者测到的杆长。请大家考虑车上的观察者是同时看到N、M两端的闪光吗?
生:不是同时看到,他看到N端先发出光,而M端后发出光。
师:那他认为地上的人观测的长度就是投影图中的N、M′间距,地上观察者读短了。因此车上观察者测量的长度l0比地上观察者测量的长度l长,即l>l0。正是因为同时的相对性导致了长度的相对性。
师:严格的数学推导告诉我们l′和l之间有如下关系:
由式可见总有l<l0。
一个杆,当它沿自身方向相对于测量者运动时,测量者的测量结果如何?
生:变短了。
师:若杆沿着垂直自身方向相对测量者运动呢?
生:应该一样。
师:如果一个人在地上量好一根静止杆的长度是l,他将这根杆带到以0.5c速度运动的飞船上,坐在飞船上测量这根杆的长度又是多少?
生:应该是L,可以从公式l=l0求出。
师:大家看对吗?
(少数人赞同,多数人沉默)教师引导学生讨论,强调参考系的相对运动是长度缩短的原因,即观察者与被测物间的相对运动才是长度缩短的原因,进而否定上述答案,得到杆长仍为l的结果还可发挥学生想像力,鼓励学生想象高速运动下的长度变化,加深对长度相对性的理解。
3.时间间隔的相对性
[投影课本图15.2-4]
师:这是一列高速火车上发生的两个事件:假定车箱安装着一个墨水罐,它每隔一定时间地出一滴墨水。墨水在、两个时刻在地上形成P、Q两个墨点,设车上的观察者测得两事件间隔Δt′时间,地面上的观察者测得两事件间隔Δt时间,车厢匀速前进速度为v。
车上观察者认为两个事件的时间间隔:,
地面观察者认为两个事件的时间间隔:,
根据公式,通过一定的数学推导可以得出:
Δt=
师:式中是与滴管相对静止的观察者测得的两次滴下墨水的时间间隔,习惯上用希腊字母表示。于是上式写成
Δt=
师:从上式可以发现哪一位观察者感觉时间长?
生:地上的观察者感觉时间间隔较长。
师:上式具有普遍意义。下面请大家计算一个问题。
[投影]
一对孪生兄弟,出生后甲乘高速飞船去旅行,测量出自己飞行30年回到地面上,乙在地面上生活,问甲回来时30岁,乙这时是多少岁?(已知飞船速度v=c)
分析:已知飞船观察者甲经时间Δ=30年,地面上的观察者乙经过时间为
Δt= =年=60年
可见甲的孪生兄弟已经60岁了。
学生兴趣盎然,教师引导学生进一步讨论激发学生对高速运动状态下的各种过程,例如物理、化学、生命过程变慢进行讨论,加深对时间间隔相对性的理解。
师:通过前面的讨论我们看到在不同参考系中,时间间隔是相对的。
4.时空相对性的验证
师:请同学们不要忘记,时空相对性的奇妙图景都是在两个“假设”的基础上推出的,它必须接受实验的检验,否则永远是猜想.大家有什么好的办法吗?
生:设法造出高速运动的飞船或火车。
师:目前我们还没有办法实现这样高的速度的宏观火车或飞船,但在微观世界,这样的高速是普遍存在的,宇宙射线中的μ子的行为为我们提供了有力的证据.
寿命3.0μs
速度0.99c
这段时间位移应为s=vt≈0.99×108×3.0×3.0×10-6 m≈890 m
这样,它在100 km高的大气层上方根本不可能到达地面,而我们却在地面找到了这
100 km 高处的来客,请大家分析原因。
生:因为μ子高速运动时的自身存在时间Δt′总是大于地面观察到的时间Δt,也就是它的寿命变长了。
师:很好,大家再从长度相对性角度考虑解释。
生:在μ子看来,这100 km厚的大气层被变短了,在它的眼里只有890 m,它能成功穿越。
师:宏观的证据是1971年的铯原子钟的环球飞行,实验结果与理论符合得很好。
5.相对论的时空观
师:下面我们来看看经典物理学的时空观与相对论时空观的差异。
[投影下面表格]
经典时空观 相对论时空观
时间 天然存在;一分一秒地流逝;与物质运动无关 与物质存在与否及运动状态有关
空间 一个大盒子;物质运动的场所 与物质存在与否及运动状态有关
联系 二者脱离,没有联系,独立存在 物质、时间、空间是紧密联系的统一体
适用范围 低速运动物体遵循经典物理学规律 更有普遍意义,广泛适用
(三)课堂总结、点评
本节课我们通过两个基本假设,推导出了“同时”的相对性,长度的相对性,时间间隔的相对性。还?通过对微观粒子探测和宏观实验验证分析掌握了时空相对性的证据。通过比较认识了经典物理学和相对论时空观的不同。
(四)课余作业
完成P114“问题与练习”的题目。课下阅读课本内容和113页“科学足迹”。15.4 广义相对论简介
【教学目标】
(一)知识与技能
1.了解广义相对性原理和等效原理。
2.了解广义相对论的几个结论。
(二)过程与方法
通过本节的学习,初步认识狭义相对论和广义相对论的基本原理。
(三)情感、态度与价值观
通过本节内容的学习,激发探索宇宙奥秘的兴趣,形成初步的相对论时空观。
【教学重点】广义相对性原理和等效原理。
【教学难点】理解广义相对论的几个结论。
【教学方法】在教师的引导下,共同分析、研究得出结论。
【教学用具】投影仪及投影片。
【教学过程】
(一)引入新课
师:1915年,继狭义相对论发表10年之后,爱因斯坦又发表了广义相对论。这节课我们来了解一下广义相对论的基本原理和几个结论。
(二)进行新课
1.超越狭义相对论的思考
师:请大家阅读117页有关内容,说一说狭义相对论中无法解释的几个问题是什么?
学生阅读、思考。
生:狭义相对论无法解释引力作用以什么速度传递;狭义相对论是惯性参考系之间的理论。为什么惯性参考系有这样特殊的地位?狭义相对论无法解释。
师:爱因斯坦认真思考了以上问题,又向前迈进了一大步,把相对性原理推广到包括非惯性系在内的任意参考系,提出了广义相对性原理。
2.广义相对性原理和等效原理
师:在任何参考系中,物理规律都是相同的,这就是广义相对性原理。
师:在广义相对论中还有另一个基本原理这就是著名的等效原理。请大家阅读教材,看看什么是等效原理,它是如何提出来的。
学生阅读、思考。
师:(投影下图,做简要讲解。)
一个均匀的引力场与一个做匀加速运动的参考系等价,这就是等效原理。
3.广义相对论的几个结论
师:从广义相对论的两个基本原理出发,可以直接得到一些“意想不到”的结论。请大家阅读教材,说明得到了哪些结论这些解论的实验验证是什么?
学生阅读,思考。
生1:第一个结论,物质的引力使光线弯曲。20世纪初,人们观测到了太阳引力场引起的光线弯曲。观测到了太阳后面的恒星。
生2:第二个结论,引力场的存在使得空间不同位置的时间进程出现差别。例如在强引力的星球附近,时间进程会变慢。天文观测到了引力红移现象,验证了这一结论的成立。
师:总结学生的回答。投影下图做必要讲解。
鼓励学生勇于探索,用于发现新的规律,为推动人类文明做出自己的贡献。
(三)课堂总结、点评
本节我们了解了爱因斯坦在对狭义相对论无法解释的几个问题的思考的基础上,提出了广义相对性原理和等效原理,从而创立了广义相对论。我们还了解了广义相对论的两个结论:一是物质的引力使光线弯曲,二是引力场的存在使得空间不同位置的时间进程出现差别。
(四)课余作业
完成P120“问题与练习”的题目。课下阅读课本内容和“科学漫步”。