人教版【同步配套】五年级下册数学 教案+课件+任务单-3的倍数的特征 人教版

文档属性

名称 人教版【同步配套】五年级下册数学 教案+课件+任务单-3的倍数的特征 人教版
格式 zip
文件大小 13.2MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-03-26 13:58:09

文档简介

《3的倍数的特征》学习任务单
【课前准备】
请准备一张百数表,如下。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
【课上活动】
3的倍数有什么特征?
请在下面写出自己的猜想。
在百数表中圈出3的倍数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
观察百数表中3的倍数,验证同学们的猜想,你有什么发现?
(2)比100大的数是不是也具有这样的特征?请你举例验证。
通过今天的学习,你都有什么收获和新的思考?请在下面写一写。
【课后作业】
1.数学书第11页第3题
2.数学书第11页第5题
【参考答案】
1.数学书第11页第3题
75、36、3051、99999、111、165、5988、7203
2.数学书第11页第5题
7:
可以填2、5、8,有三种填法。
4
2:可以填0、3、6、9,有四种填法。
44:可以填
1、4、7,有三种填法。
65
:
可以填1、4、7,有三种填法。
12
1:
可以填2、5、8,有三种填法。
第二题解题思路:
根据3的倍数的特征,我们知道一个数各位上的数的和是3的倍数,这个数就是3的倍数。所以要使一个数是3的倍数,那么就要使这个数各位上数的和是3的倍数。故可做如下思考:
7,这是一个两位数,要使这个两位数是3的倍数,那么就要让这个数十位和个位上的数的和是3的倍数。十位上就要选择与7相加的和是3的倍数的数,分别为2、5、8。因为2+7=9;5+7=12;8+7=15;已知9、12、15都是3的倍数,因此
中可填写的数为2、5、8。
4
2:这是一个三位数,要使这个三位数是3的倍数,那么就要让这个数百位、十位、个位上的数的和是3的倍数。现在百位和个位上数的和是6,那么十位上就要选择与6相加的和是3的倍数的数,分别为0、3、6、9。因为6+0=6;6+3=9;6+6=12;6+9=15;已知6、
9、12、15都是3的倍数,因此
中可填写的数为0、3、6、9。
44:这是一个三位数,要使这个三位数是3的倍数,那么就要让这个数百位、十位、个位上的数的和是3的倍数。现在十位和个位上数的和是8,那么百位上就要选择与8相加的和是3的倍数的数,分别为1、4、7。因为1+8=9;
4+8=12
;7+8=15;已知9、12、15都是3的倍数,因此
中可填写的数为1、4、7。
65
:这是一个三位数,要使这个三位数是3的倍数,那么就要让这个数百位、十位和个位上的数的和是3的倍数。现在百位和十位上数的和是11,那么个位上就要选择与11相加的和是3的倍数的数,分别为1、4、7。因为11+1=12;11+4=15;11+7=18;已知12、15、18都是3的倍数,因此
中可填写的数为1、4、7。
12
1:
这是一个四位数,要使这个四位数是3的倍数,那么就要让这个数千位、百位、十位和个位上的数的和是3的倍数。现在千位、百位和个位上数的和是4,那么十位上就要选择与4相加的和是3的倍数的数,分别为2、5、8。因为4+2=6;4+5=9;4+8=12;已知6、9、12都是3的倍数,因此
中可填写的数为2、5、8。第二单元第3课时:3的倍数的特征
年级:五年级
教材版本:人教版
一、教学背景简述
“3的倍数的特征”是学生已经掌握了因数、倍数的概念,经历了探究2、5的倍数特征的基础上进行学习的。《2、5的倍数的特征》和《3的倍数的特征》两节课均借助百数表、小棒进行研究,研究方法相似。因此可以借鉴2、5的倍数特征的研究经验来学习。但3的倍数的特征在研究上比起2、5的倍数特征又稍有难度,不易发现。本节课教学仍从学生提出的真实问题出发,针对问题引发猜想,鼓励学生自主探究、多角度求证,从而发现3的倍数的特征。然后借助学生熟悉的小棒,在“分一分”的操作活动中,通过数形结合辅助学生理解3的倍数的特征背后的道理。通过本节课的学习,引导学生在独立思考、生生交流中经历“观察发现”“猜想验证”“归纳概括”的过程,从而进行知识的自我建构,帮助学生积累探究解决问题的经验。在学生运用“观察”的方法初步发现特征后,引导学生深入探究特征背后的道理,引导学生“知其然,更要知其所以然”,培养学生科学的探究精神。
经过教材分析、学情分析,我们确定了本节课的学习重点是:探索发现3的倍数的特征,理解3的倍数的特征背后的道理。
根据学生的经验和学习困难,形成本节课的教学策略:
1.针对问题,提出猜想。通过对2、5的倍数的特征的研究,学生有了研究的经验和方法,并且产生了新的问题“3的倍数有没有特征?”学生依据自己的学习经验,提出了自己的猜想。
2.多角度求证,验证猜想。学生借助“百数表”中3的倍数,验证自己的猜想。学生可以采用举例子的方法说明猜想是否正确,在不断验证的过程中,找到最终正确的答案。
3.针对问题,明晰道理。学生通过验证,找到了3的倍数的特征:“一个数各位上的数的和是3的倍数,这个数就是3的倍数”。针对结论,引导学生进行科学的研究,探究3的倍数的特征背后的道理。研究中运用学生熟悉的小棒作为研究的载体,借助分小棒,理解3的倍数的特征背后的道理。
二、学习目标
1.在猜想、验证的活动中,探索发现3的倍数的特征,理解3的倍数的特征背后的道理。
2.经历猜想、验证、质疑、深入探究等学习过程,发展观察、推理、分析和概括的能力。
3.在探究解决问题的过程中激发学习数学的兴趣,从中获得积极的情感体验。
三、教学过程
(一)问题导入,提出问题
谈话引入:我们研究了2、5的倍数的特征,解决了同学们提出的一些问题,今天我们继续针对同学们提出的问题进行研究。
1.呈现同学们提出的问题
3的倍数有什么特征?
2.针对问题引发学生猜想
(1)3的倍数到底具有怎样的特征呢?你有怎样的想法呢?
(2)把你的想法在学习任务单上写下来。
3.呈现学生猜想
预设1:个位上是0-9的数都有可能是3的倍数,但也可能都不是3的倍数,所以我觉得3的倍数没有规律。
预设2:个位是3的数是3的倍数。
预设3:个位是3、6、9的数是3的倍数。
预设4:各个数位上的数之和是3的倍数,这个数就是3的倍数。
(二)聚焦问题,展开探究
1.呈现百数表,提出活动要求
大家有了2、5的倍数的特征的研究经验,3的倍数的特征我们继续借助“百数表”来研究。
(1)请大家拿出你的百数表,先在百数表中把3的倍数都圈出来。
(2)观察百数表中3的倍数,验证同学们的猜想是否正确。
2.呈现学生资源,进行互动研讨
聚焦猜想,结合百数表中3的倍数,有根有据进行表达,验证猜想结果。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
3.统一认识,形成初步结论
大家借助百数表中找到的3的倍数,验证出了同学们的猜想是否正确。知道了“各个数位上数的和是3的倍数,这个数就是3的倍数”这个猜想是正确的。大家还有什么问题吗?
4.举例验证,明确3的倍数的特征
预设学生提问:比100大的数是不是也具有这样的特征?为什么各个数位上的数相加的和是3的倍数,这个数就是3的倍数?
(1)举例验证,认识3的倍数的特征
结合第一个问题:“比100大的数是不是也具有这样的特征?”这个问题自己进行举例验证。
(2)针对验证结果,明确结论
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
(三)深入探究,理解其蕴含的道理
1.针对学生问题,引发学生思考
针对学生提出的第二个问题:“为什么各个数位上的数相加的和是3的倍数,这个数就是3的倍数?背后的道理是什么呢?”进行深入研讨。
2.数形结合,理解其中道理
(1)结合小棒图研究12是3的倍数的道理。
(2)结合小棒图研究41不是3的倍数的道理。
(3)结合小棒图研究123是3的倍数的道理。
3.总结梳理,知法明理
明确结论:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
(四)学习总结与反思
1.引导学生进行总结与反思
回顾今天的学习过程,你都有什么收获?
在习得的事实、研究的方法上进行梳理与总结。
(1)知识方面:知道了3的倍数的特征。
(2)过程方面:运用猜想、验证的方法。
(3)明理方面:探究知识背后的道理。
2.教师概括提炼
通过研究,我们不仅知道了3的倍数的特征,还知道特征背后的道理。在学习知识的过程中,找到了研究知识的方法,积累了探究规律的经验。
(五)作业
1.数学书第11页第3题
2.数学书第11页第5题(共68张PPT)
3的倍数的特征
五年级
数学
研究了2、5倍数的特征。
3的倍数有什么特征?
3的倍数有什么特征?把你的想法在学
习单上写一写。
同学们都有哪些想法呢?
同学们的猜想都正确吗?
请大家拿出百数表,在百数表中圈出3的倍数。
请大家拿出百数表,在百数表中圈出3的倍数。
观察百数表中3的倍数,验证一下同
学们的猜想是否正确呢?
我发现这些数各个数位上的数
的和都是3的倍数。
我发现这些数各个数位上的数
的和都是3的倍数。
大家还有什么新的问题吗?
大家还有什么新的问题吗?
题一
题二
数是不是
数位上的数
相加的和是3的倍数,这
个数就是3的倍数?
也具有这样的特征?
比100大的数是不是也具有这样的特征?
请你举例验证。
比100大的数是不是也具有这样的特征?
请你举例验证。
同学们的发现
同学们的发现
书中的结论
一个数各位上的数的和是3的
倍数,这个数就是3的倍数。
问题一
问题二
比100大的数是不是
也具有这样的特征?
为什么各个数位上的数
相加的和是3的倍数,这
个数就是3的倍数?
12
12
12
12
12
12
12
12
12
12
10
2
12
10
2
9
1
12
10
2
9
1
12
10
2
9
1
12
10
2
9
1
3
41
41
41
41
41
41
40
1
41
40
4个9
4
1
41
40
4个9
4
1
41
40
4个9
4
1
41
40
4个9
4
1
5
123
123
123
·
·
123
·
·
123
20
100
3
·
·
123
20
100
1
3
·
99
2个9
2
·
123
20
100
1
3
·
99
2个9
2
·
123
20
100
1
3
·
99
2个9
2
·
123
20
100
1
3
·
99
2个9
2
·
书中是这样说的:
一个数各位上的数的和是3的倍数,
这个数就是3的倍数。
问题一
题二
比100大的数是不是
为什么各个数位上的数
相加的和是3的倍数,这
个数就是3的倍数?
也具有这样的特征?
通过今天的学习,你有什么收获和新的思考?
通过今天的学习,你有什么收获和新的思考?
通过今天的学习,你有什么收获和新的思考?
背后的道理
探究方法
知道了3的倍
数的特征
作业1:数学书第11页第3题
作业2:数学书第11页第5题

见3的倍数的特征
五年级数学
?自数有数个最太的数黑数你接数冥不也数个?
?[2比乃小,那的数是不是比3的信枚争7
一个数的倍数有天数个,初这个数灼所有的倍教是不是有
计么共同快点明尼?比如)的倍数有什么特点?的倍数有什么特
点?4的倍数有什么点、5的倍数有么生?6?7?89
?不是一个越大它的因教就越多
个数的片A数什的司了。
研究了2、5倍数的特征。
?面数态数欢去最太的自救那数的教是不也有数个?
?2比3小那?的教是不是比3的传教多7
一个数的倍数有天数个,初这个数灼所有的倍教是不是有
十么共同的特啪?比如的倍数有什么情点?的倍数有什么特
点?4的倍数有什么生点巧5的倍薮有么?6?728292
?不是一个越大它的因教就越多
个数的片A数什的司了。
3的倍数有什么特征?
3的倍数有什么特征?把你的想法在学
习单上写一写。
同学们都有哪些想法呢?
?个位是3的数就是3的倍数
个低是3.6.9的教是3的倍较,?
个位上是0—9都有可能是3的倍数但也可能都
不是3的倍数所以我觉得3的倍数没有规律。
太个数位上的数和是3的倍数?。
同学们的猜想都正确吗?
请大家拿出百数表,在百数表中圈出3的倍数。
2345678910
121314151617181920
222324252627282930
31323334353637383940
41424344454647484950
51525354555657585960
61626364656667686970
1727374757677787980
81828384858687888990
919293949596979899100
请大家拿出百数表,在百数表中圈出3的倍数。
12345678910
11121314151617181920
21222324252627282930
31323334|353637383940
41424344454647484950
51525354555657585960
6162636465667686970
71727374757677787980
81828384858687888990
91929394|9596979899100
观察百数表中3的倍数,验证一下同
学们的猜想是否正确呢?
个位上是0-9都有可能是3的倍数但也可能都
不是3的倍数所以我觉得3的倍数没有规律。
个位上是O-9都有可能是3的倍数但也可都
不是3的倍数以我觉得3的倍数没有规律。
n|14zt67v2
义2123242526872827
B23453780
4414541484°
525355s
6121636465667168670
G772
73174
15
761
88283184858487
213|5171110