第2章相交线与平行线培优卷
1.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为( )
A.120° B.60° C.30° D.150°
2.如图,AB∥CD,点E在CA的延长线上.若∠BAE=50°,则∠ACD的大小为( )
A.120° B.130° C.140° D.150°
3.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有( )
A.3个 B.4个 C.5个 D.6个
4.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=( )
A.110° B.115° C.120° D.130°
5.如图,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,且∠DOE=60°,∠BOE=∠EOC,则下列四个结论正确的个数有( )
①∠BOD=30°;②射线OE平分∠AOC;③图中与∠BOE互余的角有2个;④图中互补的角有6对.
A.1个 B.2个 C.3个 D.4个
6.如图,如果AB∥EF,EF∥CD,下列各式正确的是( )
A.∠1+∠2﹣∠3=90° B.∠1﹣∠2+∠3=90°
C.∠1+∠2+∠3=90° D.∠2+∠3﹣∠1=180°
7.①如图1,AB∥CD,则∠A+∠E+∠C=180°;②如图2,AB∥CD,则∠E=∠A+∠C;③如图3,AB∥CD,则∠A+∠E﹣∠1=180°;④如图4,AB∥CD,则∠A=∠C+∠P.以上结论正确的个数是( )
A.1个 B.2个 C.3个 D.4个
8.若∠1与∠2是同位角,且∠1=60°,则∠2是( )
A.60° B.120° C.120°或60° D.不能确定
9.如图,直线EF分别交CD、AB于M、N,且∠EMD=65°,∠MNB=115°,则下列结论正确的是( )
A.∠A=∠C B.∠E=∠F C.AE∥FC D.AB∥DC
10.若一个角的一半比它的补角小30°,则这个角为 .
11.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°,则∠AOD= °.
12.如图,AB∥CD,CE∥GF,若∠1=60°,则∠2= °.
13.如图,AB∥CD,EF⊥BD,垂足为F,∠1=43°,则∠2的度数为 .
14.如图,已知AB∥DE,∠BAC=m°,∠CDE=n°,则∠ACD= .
15.如图,把一张长方形纸条ABCD沿AF折叠.已知∠ADB=25°,AE∥BD,则∠BAF= .
16.如图,有下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠B+∠BAD=180°.其中能得到AB∥CD的是 (填写编号).
17.已知直线m∥n,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若∠1=20°,则∠2= 度.
18.如图,直线l1∥l2,∠α=∠β,∠1=38°,则∠2= .
19.如图,AB∥CD,则∠1+∠3﹣∠2的度数等于 .
20.如图,把一张长方形纸片ABCD沿EF折叠后,D、C分别在M、N的位置上,EM与BC的交点为G,若∠EFG=65°,则∠2= .
21.已知∠A的两边与∠B的两边分别平行,且∠A比∠B的3倍少40°,那么∠A= °.
22.已知,如图,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.
(1)如图1,若∠MOC=28°,求∠BON的度数.
(2)若∠MOC=m°,则∠BON的度数为 .
(3)由(1)和(2),我们发现∠MOC和∠BON之间有什么样的数量关系?
(4)若将三角形MON绕点O旋转到如图2所示的位置,试问∠MOC和∠BON之间的数量关系是否发生变化?请说明理由.
23.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.
(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE= ;
(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;
(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=∠AOE.求∠BOD的度数.
24.已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE∥BC.
25.如图,AB∥DG,AD∥EF.
(1)试说明:∠1+∠2=180°;
(2)若DG是∠ADC的平分线,∠2=138°,求∠B的度数.
26.如图,AB∥CD,∠ADC=∠ABC.求证:∠E=∠F.
27.已知:如图,∠A=∠ADE,∠C=∠E.
(1)若∠EDC=3∠C,求∠C的度数;
(2)求证:BE∥CD.
28.如图1,MN∥EF,C为两直线之间一点.
(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.
(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.
(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系: .
参考答案
1.解:∵∠1和∠2互为余角,∠1=60°,
∴∠2=90°﹣∠1=90°﹣60°=30°,
∵∠2与∠3互补,
∴∠3=180°﹣∠2=180°﹣30°=150°.
故选:D.
2.解:∵∠BAE=50°,
∴∠CAB=180°﹣50°=130°.
∵AB∥CD,
∴∠BAC=∠ACD=130°.
故选:B.
3.解:①由∠1=∠2,可得a∥b;
②由∠3+∠4=180°,可得a∥b;
③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;
④由∠2=∠3,不能得到a∥b;
⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;
⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;
故选:C.
4.解:∵长方形ABCD沿EF对折后两部分重合,∠1=50°,
∴∠3=∠2==65°,
∵长方形对边AD∥BC,
∴∠AEF=180°﹣∠3=180°﹣65°=115°.
故选:B.
5.解:∵∠DOE=60°,
∴∠AOD=30°,
∴∠AOE=90°,
∴∠EOC=90°,
∵,∠BOE=∠EOC,
∴∠BOE=30°,
∴∠BOD=30°,故①正确;
∵∠BOD=∠AOD=30°,
∴射线OE平分∠AOC,故②正确;
∵∠BOE=30°,∠AOB=60°,∠DOE=60°,
∴∠AOB+∠BOE=90°,∠BOE+∠DOE=90°,
∴图中与∠BOE互余的角有2个,故③正确;
∵∠AOE=∠EOC=90°,
∴∠AOE+∠EOC=180°,
∵∠EOC=90°,∠DOB=30°,∠BOE=30°,∠AOD=30°,
∴∠COD+∠AOD=180°,∠COD+∠BOD=180°,∠COD+∠BOE=180°,∠COB+∠AOB=180°,∠COB+∠DOE=180°,
∴图中互补的角有6对,故④正确,
正确的有4个,
故选:D.
6.解:
∵AB∥EF,
∴∠2+∠BOE=180°,
∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,
∵O在EF上,
∴∠BOE+∠1+∠COF=180°,
∴180°﹣∠2+∠1+180°﹣∠3=180°,
即∠2+∠3﹣∠1=180°,
故选:D.
7.解:①过点E作直线EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠A+∠1=180°,∠2+∠C=180°,
∴∠A+∠B+∠E=360°,故本小题错误;
②过点E作直线EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠A=∠1,∠2=∠C,
∴∠AEC=∠A+∠C,即∠E=∠A+∠C,故本小题正确;
③过点E作直线EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠A+∠3=180°,∠1=∠2,
∴∠A+∠AEC﹣∠1=180°,即∠A+∠E﹣∠1=180°,故本选项正确;
④∵∠1是△CEP的外角,
∴∠1=∠C+∠P,
∵AB∥CD,
∴∠A=∠1,即∠A=∠C﹣∠P,故本小题正确.
综上所述,正确的小题有②③④共3个.
故选:C.
8.解:因为直线的位置无法确定,所以无法确定∠2与∠1的关系,故选D.
9.解:∵∠EMD=65°,∠MNB=115°,
∴∠CMN=∠EMD=65°,
∴∠CMN+∠MNB=180°,
∴AB∥DC
故选:D.
10.解:设这个角是x°,根据题意,
得,
解得:x=100.
即这个角的度数为100°.
故答案为:100°.
11.解:∵∠AOB=∠COD=90°,∠BOC=35°,
∴∠BOD=∠COD﹣∠BOC=90°﹣35°=55°,
∴∠AOD=∠AOB+∠BOD=90°+55°=145°.
故答案为:145.
12.解:∵AB∥CD,
∴∠1=∠CEF,
∵CE∥GF,
∴∠2=∠CEF,
∴∠2=∠1,
∵∠1=60°,
∴∠2=60°,
故答案为:60.
13.解:∵AB∥CD,
∴∠D=∠1=43°.
∵EF⊥BD,垂足为F,
∴∠DFE=90°,
∴∠2=180°﹣90°﹣43°=47°.
故答案为:47°.
14.解:延长ED交AC于F,
∵AB∥DE,
∴∠3=∠BAC=m°,∠1=180°﹣∠3=180°﹣m°,
∠2=180°﹣∠CDE=180°﹣n°,
故∠C=∠3﹣∠2=m°﹣180°+n°=m°+n°﹣180°.
故答案是:m°+n°﹣180°.
15.解:∵四边形ABCD是矩形,
∵∠BAD=90°.
∵∠ADB=25°,
∴∠ABD=90°﹣25°=65°.
∵AE∥BD,
∴∠BAE=180°﹣65°=115°,
∴∠BAF=∠BAE=57.5°.
故答案为:57.5°
16.解:①∵∠1=∠2,
∴AD∥BC;
②∵∠3=∠4,
∴AB∥CD;
③∵∠B=∠5,
∴AB∥DC;
④∵∠B+∠BAD=180°,
∴AD∥BC,
∴能够得到AB∥CD的条件是②③,
故答案为:②③.
17.解:∵直线m∥n,
∴∠2=∠ABC+∠1=30°+20°=50°,
故答案为:50.
18.解:延长AB交l2于点E,
∵∠α=∠β,
∴AB∥DC,
∴∠3+∠2=180°,
∵l1∥l2,
∴∠1=∠3=38°,
∴∠2=180°﹣38°=142°,
故答案为:142°.
19.解:∵AB∥CD,
∴∠1=∠AFD,
∵∠3是△CEF的外角,
∴∠3﹣∠2=∠EFC,
又∵∠AFD+∠EFC=180°,
∴∠1+∠3﹣∠2=180°,
故答案为:180°.
20.解:∵长方形纸片ABCD的边AD∥BC,
∴∠3=∠EFG=65°,
根据翻折的性质,可得∠1=180°﹣2∠3=180°﹣2×65°=50°,
又∵AD∥BC,
∴∠2=180°﹣∠1=180°﹣50°=130°.
故答案为:130°.
21.解:设∠B的度数为x,则∠A的度数为3x﹣40°,
当∠A=∠B时,即x=3x﹣40°,解得x=20°,所以3x﹣40°=20°;
当∠A+∠B=180°时,即x+3x﹣40°=180°,解得x=55°,所以3x﹣40°=125°;
所以∠A的度数为20°或125°.
故答案为:20°或125.
22.解:(1)如图1,∵∠MOC=28°,∠MON=90°,
∴∠NOC=90°﹣28°=62°,
又∵OC平分∠AON,
∴∠AOC=∠NOC=62°,
∴∠BON=180°﹣2∠NOC=180°﹣62°×2=56°,
(2)如图1,∵∠MOC=m°,∠MON=90°,
∴∠NOC=90°﹣m°=(90﹣m)°,
又∵OC平分∠AON,
∴∠AOC=∠NOC=(90﹣m)°,
∴∠BON=180°﹣2∠NOC=180°﹣(90﹣m)°×2=2m°,
故答案为:2m°;
(3)由(1)和(2)可得:∠BON=2∠MOC;
(4)∠MOC和∠BON之间的数量关系不发生变化,
如图2,∵OC平分∠AON,
∴∠AOC=∠NOC,
∵∠MON=90°,
∴∠AOC=∠NOC=90°﹣∠MOC,
∴∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC,
即:∴∠BON=2∠MOC.
23.解:(1)∵∠BOE=∠COE+∠COB=90°,
又∵∠COB=60°,
∴∠COE=30°,
故答案为:30°;
(2)∵OE平分∠AOC,
∴∠COE=∠AOE=COA,
∵∠EOD=90°,
∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,
∴∠COD=∠DOB,
∴OD所在射线是∠BOC的平分线;
(3)设∠COD=x°,则∠AOE=5x°,
∵∠DOE=90°,∠BOC=60°,
∴6x=30或5x+90﹣x=120
∴x=5或7.5,
即∠COD=5°或7.5°
∴∠BOD=65°或52.5°.
24.证明:∵CD⊥AB(已知),
∴∠1+∠3=90°(垂直定义).
∵∠1+∠2=90°(已知),
∴∠3=∠2(同角的余角相等).
∴DE∥BC(内错角相等,两直线平行).
25.解:(1)∵AD∥EF,
∴∠BAD+∠2=180°,
∵AB∥DG,
∴∠BAD=∠1,
∴∠1+∠2=180°.
(2)∵∠1+∠2=180°且∠2=138°,
∴∠1=42°,
∵DG是∠ADC的平分线,
∴∠CDG=∠1=42°,
∵AB∥DG,
∴∠B=∠CDG=42°.
26.证明:∵AB∥CD,
∴∠ABC=∠DCF.
又∵∠ADC=∠ABC
∴∠ADC=∠DCF.
∴DE∥BF.
∴∠E=∠F.
27.解:(1)∵∠A=∠ADE,
∴AC∥DE,
∴∠EDC+∠C=180°,
又∵∠EDC=3∠C,
∴4∠C=180°,
即∠C=45°;
(2)∵AC∥DE,
∴∠E=∠ABE,
又∵∠C=∠E,
∴∠C=∠ABE,
∴BE∥CD.
28.解:(1)如图1,过C作CG∥MN,DH∥MN,
∵MN∥EF,
∴MN∥CG∥DH∥EF,
∴∠1=∠ADH,∠2=∠BDH,
∠MAC=∠ACG,∠EBC=∠BCG,
∵∠MAC与∠EBC的平分线相交于点D,
∴∠1=ACG,∠2=,
∴∠ADB=(∠ACG+∠BCG)=∠ACB;
∵∠ACB=100°,
∴∠ADB=50°;
(2)如图2,过C作CG∥MN,DH∥MN,
∵MN∥EF,
∴MN∥CG∥DH∥EF,
∴∠1=∠ADH,∠2=∠BDH,
∠NAC=∠ACG,∠FBC=∠BCG,
∵∠MAC与∠EBC的平分线相交于点D,
∴∠1=MAC,∠2=EBC,
∴∠ADB=∠1+∠2=(∠MAC+∠EBC)=(180°﹣∠NAC+180°﹣∠FBC)=(360°﹣∠ACB),
∴∠ADB=180°﹣∠ACB;
(3)如图3,过C作CG∥MN,DH∥MN,
∵MN∥EF,
∴MN∥CG∥DH∥EF,
∴∠1=∠ADH,∠2=∠BDH,
∠NAC=∠ACG,∠FBC=∠BCG,
∵∠MAC与∠FBC的平分线相交于点D,
∴∠1=MAC,∠2=∠CBF,
∵∠ADB=360°﹣∠1﹣(180°﹣∠2)﹣∠ACB=360°﹣∠MAC﹣(180°﹣∠CBF)﹣∠ACB=360°﹣(180°﹣∠ACG)﹣(180°﹣∠BCG)=90°﹣∠ACB.
∴∠ADB=90°﹣ACB.
故答案为:∠ADB=90°﹣ACB.