中小学教育资源及组卷应用平台
18.1.2平行四边形的判定第一课时同步练习
一、单选题
1.如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形( )
A.4个 B.5个 C.8个 D.9个
2.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(?? )
A.5 B.7 C.9 D.11
3.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
①线段MN的长;
②△PAB的周长;
③△PMN的面积;
④直线MN,AB之间的距离;
⑤∠APB的大小.
其中会随点P的移动而变化的是( )
A.②③ B.②⑤ C.①③④ D.④⑤
4.如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为( )
A.12 B.14 C.24 D.21
5.如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点,若∠MPN=130°,则∠NMP的度数为( )
A.10° B.15° C.25° D.40°
6.如图,在四边形中,,是对角线,分别是的中点,连接,则四边形的形状是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
7.如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF的周长为( )
A.12 B.11 C.10 D.9
8.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
9.下列命题中,真命题的个数有( )
①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;
③一组对边平行,另一组对边相等的四边形是平行四边形.
A.3个 B.2个 C.1个 D.0个
10.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=25°,则∠EPF的度数是( )
A.100° B.120° C.130° D.150°
二、填空题
11.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是__.
12.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是_____.
13.如图,ABCD的对角线BD上有两点E、F,请你添加一个条件,使四边形AECF是平行四边形,你添加的条件是___________.
14.小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是_____.
三、解答题
15.如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.证明四边形DAEF是平行四边形.
16.如图,在□ ABCD中,点E、F在对角线BD上,且BE=DF,
(1)求证:AE=CF;
(2)求证:四边形AECF是平行四边形.
17.如图,中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.
18.如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.
(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形.
19.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).
(1)用含t的代数式表示:
AP= ;DP= ;BQ= ;CQ= .
(2)当t为何值时,四边形APQB是平行四边形?
(3)当t为何值时,四边形PDCQ是平行四边形?
答案
一、单选题
1.D 2.B 3.B 4.A 5.C 6.C 7.D 8.D 9.B 10.C
二、填空题
11.1.
12.14
13.BE=DF
14.两组对边分别相等的四边形是平行四边形.
三、解答题
15.证明:∵△ABD和△BCF都是等边三角形,
∴∠DBF+∠FBA=∠ABC+∠ABF=60°,BD=BA,BF=BC,
∴∠DBF=∠ABC.
∴△ABC≌△DBF,∴AC=DF.
又∵AC=AE,∴DF=AE.
同理可证得△ABC≌△EFC,∴AB=EF.
又∵AB=AD,∴EF=AD,
∴四边形DAEF是平行四边形.
16.【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD.
∴∠ABE=∠CDF.
在△ABE和△CDF中,
,
∴△ABE≌△DCF(SAS).
∴AE=CF.
(2)∵△ABE≌△DCF,
∴∠AEB=∠CFD,
∴∠AEF=∠CFE,
∴AE∥CF,
∵AE=CF,
∴四边形AECF是平行四边形.
17.【详解】
四边形ABCD是平行四边形,
,
,
是AD的中点,
,
又,
,
,
又,
四边形ACDF是平行四边形.
18.【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠CBF=∠ADE,
∵AE⊥BD,CF⊥BD,
∴∠CFB=∠AED=90°,
∴△AED≌△CFB(AAS).
(2)证明:∵△AED≌△CFB,
∴AE=CF,
∵AE⊥BD,CF⊥BD,
∴AE∥CF,
∴四边形AFCE是平行四边形.
19.【详解】
解:(1)AP=t,DP =12﹣t,BQ=15﹣2t,CQ=2t;
(2)根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.
∵AD∥BC,
∴当AP=BQ时,四边形APQB是平行四边形,
∴t=15﹣2t,解得t=5,
∴t=5s时四边形APQB是平行四边形;
(3)由AP=tcm,CQ=2tcm,
∵AD=12cm,BC=15cm,
∴PD=AD﹣AP=12﹣t,
如图1,∵AD∥BC,
∴当PD=QC时,四边形PDCQ是平行四边形.
即:12﹣t=2t,
解得t=4s,
∴当t=4s时,四边形PDCQ是平行四边形.
_21?????????è?????(www.21cnjy.com)_