第五章 分式方程应用周末培优训练题
1.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?
2.扬州市某土特产商店购进960盒绿叶牌牛皮糖,由于进入旅游旺季,实际每天销售的盒数比原计划每天多20%,结果提前2天卖完.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.
3.学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?
4.人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.
(1)求甲种牛奶、乙种牛奶的进价分别是多少元?
(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?
5.一项工程要在限期内完成,如果第一组单独做,恰好按规定日期完成,如果第二组单独做,超过规定日期4天才能完成,如果两组合做3天后剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?
6.哈尔滨市道路改造工程中,有一段6000米的道路由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用30天.
(1)求甲、乙两工程队每天各完成多少米;
(2)如果甲工程队每天需付工程费1000元,乙工程队每天需付工程费600元,若甲、乙两工程队共同完成此项任务,支付工程队总费用低于33800元,则甲工程队最少施工多少天?(注:天数取整数)
7.春节前夕,某超市用6000元购进了一批箱装饮料,上市后很快售完,接着又用8800元购进第二批这种箱装饮料.已知第二批所购箱装饮料的进价比第一批每箱多20元,且数量是第一批箱数的倍.
(1)求第一批箱装饮料每箱的进价是多少元;
(2)若两批箱装饮料按相同的标价出售,为加快销售,商家决定最后的10箱饮料按八折出售,如果两批箱装饮料全部售完利润率不低于36%(不考虑其他因素),那么每箱饮料的标价至少多少元?
8.春节是我国的传统节日,人们素有吃水饺的习俗.某商场在年前准备购进A、B两种品牌的水饺进行销售,据了解,用3000元购买A品牌水饺的数量(袋)比用2880元购买B品牌水饺的数量(袋)多40袋,且B品牌水饺的单价(元/袋)是A品牌水饺单价(元/袋)的1.2倍.
(1)求A、B两种品牌水饺的单价各是多少?
(2)若计划购进这两种品牌的水饺共220袋销售,且购买A品牌水饺的费用不多于购买B品牌水饺的费用,写出总费用w(元)与购买A品牌水饺数量m(袋)之间的关系式,并求出如何购买才能使总费用最低?最低是多少?
9.某单位为美化环境,计划对面积为1200平方米的区域进行绿化,现安排甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的1.5倍,并且在独立完成面积为360平方米区域的绿化时,甲队比乙队少用3天.
(1)甲、乙两工程队每天能绿化的面积分别是多少平方米?
(2)若该单位每天需付给甲队的绿化费用为700元,付给乙队的费用为500元,要使这次的绿化总费用不超过14500元,至少安排甲队工作多少天?
10.“阅读陪伴成长,书香润泽人生.”某校为了开展学生阅读活动,计划从书店购进若干本A、B两类图书(每本A类图书的价格相同,每本B类图书的价格也相同),且每本A类图书的价格比每本B类图书的价格多5元,用1200元购进的A类图书与用900元购进的B类图书册数相同.
(1)求每本A类图书和每本B类图书的价格各为多少元?
(2)根据学校实际情况,需从书店一次性购买A、B两类图书共300册,购买时得知:一次性购买A、B两类图书超过100册时,A类图书九折优惠(B类图书按原价销售),若该校此次用于购买A、B两类图书的总费用不超过5100元,那么最多可以购买多少本A类图书?
11.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.
(1)求甲、乙两工程队每天各完成多少米?
(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?
12.列方程解应用题:
中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.
13.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的3倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需10天.
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
14.某一工程,在工程招标时,接到甲乙两个工程队的投标书.施工一天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元.工程领导们根据甲乙两队的投标书测算,可有三种施工方案:
方案A:甲队单独完成这项工程刚好如期完成;
方案B:乙队单独完成这项工程比规定日期多用5天;
方案C:若甲乙两队合作4天后,余下的工程由乙队单独做也正好如期完成.
在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?
15.为了建设“美丽嵊州”,嵊义线两侧绿化提质改造工程如火如荼地进行.某施工队计划购买甲、乙两种树木,已知3棵甲种树木和2棵乙种树木共需700元;1棵甲种树木和3棵乙种树木共需700元.
(1)求甲种树木、乙种树木每棵分别是多少元.
(2)该施工队某天计划种植300棵树木,为了尽量减少对嵊义线交通的影响,实际劳动中每小时种植的数量比原计划多20%,结果提前1小时完成,求原计划每小时种植多少棵树.
参考答案
1.解:设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x本练习本,
根据题意得:﹣=0.2,
解得:x=6,
经检验,x=6是原方程的解,且符合题意.
答:小明元旦前在该超市买了6本练习本.
2.问题:求原计划每天销售多少盒绿叶牌牛皮糖?
解:设原计划每天销售x盒绿叶牌牛皮糖,则实际每天销售1.2x盒绿叶牌牛皮糖,
根据题意,得:﹣=2,
解得:x=80,
经检验,x=80是原分式方程的解,且符合题意.
答:原计划每天销售80盒绿叶牌牛皮糖.
3.解:设规定日期为x天,
根据题意,得2(+)+×(x﹣2)=1
解这个方程,得x=6
经检验,x=6
是原方程的解.
∴原方程的解是x=6.
答:规定日期是6天.
4.解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,
根据题意得:=,
解得:x=50,
经检验,x=50是原分式方程的解,且符合实际意义,
∴x﹣5=45.
答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.
(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,
根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,
解得:y=23,
∴3y﹣5=64.
答:该商场购进甲种牛奶64件,乙种牛奶23件.
5.解:设规定日期是x天,则第一组单独完成用x天,第二组单独完成用x+4天.
根据题意得:+=1.
解得:x=12.
经检验:x=12是原方程的解,并且符合题意.
答:规定日期是12天.
6.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,
根据题意得:=+30,
解得x=100,
经检验:x=100是原方程的解,
则2x=2×100=200(米),
答:甲工程队每天完成200米,乙工程队每天完成100米;
(2)设甲工程队施工a天,
根据题意得:1000a+600×<33800,
解得:a>11,
∵a是整数,
∴a的最小值为12,
答:甲工程队最少施工12天.
7.解:(1)该第一批箱装饮料每箱的进价是x元,则第二批购进(x+20)元,
根据题意,得
解得:x=200
经检验,x=200是原方程的解,且符合题意,∴第一批箱装饮料每箱的进价是200元.
(2)设每箱饮料的标价为y元,
根据题意,得(30+40﹣10)y+0.8×10y≥(1+36%)(6000+8800)
解得:y≥296
答:至少标价296元.
8.解:(1)设A品牌水饺单价为x元/袋,则B品牌水饺单价为1.2x元/袋,
根据题意,得:﹣=40,
,
解得:x=15,
经检验,x=15是原方程的解,
∴1.2x=18;
答:A品牌水饺单价为15元/袋,B品牌水饺单价为18元/袋;
(2)设购进A品牌水饺m袋,则购进B品牌水饺(220﹣m)袋,
依题意,得:15m≤18(220﹣m),
解得:m≥120,
由题意得:w=15m+18(220﹣m)=﹣3m+3960,
当m=120时,w最小=3600,
220﹣120=100,
答:A品牌水饺购买120袋,B品牌水饺购买100袋时,总费用最低,最低是3600元.
9.解:(1)设乙工程队每天能完成绿化的面积是x平方米,则甲工程队每天能完成绿化的面积是1.5x平方米,
依题意,得:﹣=3,
解得:x=40,
经检验,x=40是原方程的解,且符合题意,
∴1.5x=60.
答:甲工程队每天能完成绿化的面积是60平方米,乙工程队每天能完成绿化的面积是40平方米.
(2)设安排甲队工作m天,则需安排乙队工作天,
依题意,得:700m+500×≤14500,
解得:m≥10.
所以m最小值是10.
答:至少应安排甲队工作10天.
10.解:(1)设每本A类图书的价格是x元,则每本B类图书的价格是(x﹣5)元,根据题意可得:
,
解得:x=20,
经检验x=20是方程的解,所以x﹣5=20﹣5=15,
答:每本A类图书的价格是20元,每本B类图书的价格是15元;
(2)设该校A类图书y本,则B类图书(300﹣y),
根据题意可得:20×90%y+15×(300﹣y)≤5100,
解得:y≤200,
答:最多可以购买200本A类图书.
11.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,
依题意,得:﹣=10,
解得:x=300,
经检验,x=300是原方程的解,且符合题意,
∴2x=600.
答:甲工程队每天完成600米,乙工程队每天完成300米.
(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,
依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,
解得:y≥1,
∴﹣y≤﹣=6.
答:两工程队最多可以合作施工6天.
12.解:设每套《水浒传》连环画的价格为x元,则每套《三国演义》连环画的价格为(x+60)元.
由题意,得=2×
解得x=120
经检验,x=120是原方程的解,且符合题意.
答:每套《水浒传》连环画的价格为120元.
13.解:(1)设这项工程的规定时间是x天,根据题意得:
(+)×15+=1.
解得:x=30.
经检验x=30是原分式方程的解.
答:这项工程的规定时间是30天.
(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=22.5(天),
则该工程施工费用是:22.5×(6500+3500)=225000(元).
答:该工程的费用为225000元.
14.解:设甲单独完成这一工程需x天,则乙单独完成这一工程需(x+5)天.
根据方案C,可列方程得+=1,
解这个方程得x=20﹣﹣﹣﹣﹣﹣﹣(4分)
经检验:x=20是所列方程的根.
即甲单独完成这一工程需20天,乙单独完成这项工程需25天.
所以 A方案的工程款为1.5×20=30(万元)
B方案的工程款为1.1×25=27.5(万元),但乙单独做超过了日期,因此不能选.
C方案的工程款为1.5×4+1.1×4+1.1×16=28(万元),
所以选择C方案.
15.解:(1)设甲种树木每棵是x元,乙种树木每棵是y元,依题意有
,
解得.
故甲种树木每棵是100元,乙种树木每棵是200元;
(2)设原计划每小时种植z棵树,依题意有
﹣=1,
解得z=50,
经检验,z=50是原方程组的解,且符合题意.
故原计划每小时种植50棵树.