【2021抢分攻略】高考物理三轮冲刺复习讲义 专题十二 电磁感应(原卷版+解析版)

文档属性

名称 【2021抢分攻略】高考物理三轮冲刺复习讲义 专题十二 电磁感应(原卷版+解析版)
格式 zip
文件大小 5.6MB
资源类型 试卷
版本资源 通用版
科目 物理
更新时间 2021-03-31 08:36:01

文档简介

专题十二
电磁感应(原卷版)
要点一、关于磁通量,磁通量的变化、磁通量的变化率
1、磁通量
  磁通量,是一个标量,但有正、负之分。
  可以形象地理解为穿过某面积磁感线的净条数。
  2、磁通量的变化
  磁通量的变化.
  要点诠释:
的值可能是、绝对值的差,也可能是绝对值的和。例如当一个线圈从与磁感线垂直的位置转动的过程中.
  3、磁通量的变化率
  磁通量的变化率表示磁通量变化的快慢,它是回路感应电动势的大小的决定因素。
    ,
  在回路面积和位置不变时(叫磁感应强度的变化率);
  在B均匀不变时,与线圈的匝数无关。
要点二、关于楞次定律
  (1)定律内容:感应电流具有这样的方向:感应电流的磁场总是阻碍引起感应电流的磁通量发生变化。
  (2)感应电流方向的决定因素是:电路所包围的引起感应电流的磁场的方向和磁通量的增减情况。
  (3)楞次定律适用范围:适用于所有电磁感应现象。
  (4)应用楞次定律判断感应电流产生的力学效果(楞次定律的变式说法):感应电流受到的安培力总是阻碍线圈或导体棒与磁场的相对运动,即线圈与磁场靠近时则相斥,远离时则相吸。
  (5)楞次定律是能的转化和守恒定律的必然结果。
要点三、法拉第电磁感应定律
  电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即.
  要点诠释:
对匝线圈有.
  (1)是时间内的平均感应电动势,当时,转化为瞬时感应电动势。
  (2)适应于任何感应电动势的计算,导体切割磁感线时.,
    
自感电动势都是应用而获得的结果。
  (3)感应电动势的计算,其中是磁感强度的变化率,是图线的斜率。
要点四、电磁感应中电路问题的解题方法
  当闭合电路的磁通量发生变化或有部分导体切割磁感线运动时,闭合电路中出现感应电流,对连接在闭合电路中的各种用电器供电,求电流、电压、电阻、电功率等,是一种基本的常见的习题类型——电磁感应中的电路问题。
  解决这类问题的基本步骤是:
  (1)明确哪一部分导体或电路产生感应电动势,则该导体或电路就是电源。
  (2)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。
  (3)正确分析电路结构,并画出等效电路图。
  (4)综合应用电路的知识、方法解题。
要点五、电磁感应中力学问题解题方法
  电磁感应中通过导体的感应电流,在磁场中将受到安培力的作用,从而影响其运动状态,故电磁感应问题往往跟力学问题联系在一起。解决此类问题要将电磁学知识和力学知识综合起来应用。
  其解题一般思路是:
  (1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。
  (2)根据欧姆定律求感应电流。
  (3)分析导体受力情况(包含安培力,用左手定则确定其方向)。
  (4)应用力学规律列方程求解。
  电磁感应中的力学问题比纯力学问题多一个安培力,处理方法与纯力学问题基本相同,但应注意安培力的大小和方向的确定。
要点六、电磁感应中能量转化问题
  1、电磁感应中涉及的功能关系有:
  (1)克服安培力做功是将其他形式的能量转化为电能,且克服安培力做多少功,就有多少其他形式的能量转化为电能。
  (2)感应电流通过电阻或者安培力做功,又可使电能转化为电阻的内能或机械能,且做多少功就转化多少能量。
  2、主要解题方法有:
  ①运用功的定义求解;②运用功能关系求解;③运用能的转化及守恒定律求解。
  3、在电磁感应现象的问题中,常碰到这样的问题:
  外力克服安培力做功,就有其他形式的能量(如机械能)转化为电能,而电能又通过电路全部转化为内能(焦耳热),对这样的情形就有如下的关系:.
要点七、关于自感现象的研究
  1、在断电自感中,灯泡更亮一下的条件是什么?
  设开关闭合时,电源路端电压为,线圈的电阻为,灯泡的电阻为,则通过线圈的电流为。当开关断开后,线圈和灯泡组成的回路中的电流从开始减弱。
  若,有,在断开开关的瞬间,通过灯泡的电流会瞬时增大,灯泡会更亮一下。若有,断开开关后,通过灯泡的电流减小,灯泡不会更亮一下。           
       
  2、线圈对变化电流的阻碍作用与对稳定电流的阻碍作用有何不同?
  ①两种阻碍作用产生的原因不同。
  线圈对稳定电流的阻碍作用,是由绕制线圈的导线的电阻决定的,对稳定电流阻碍作用的产生原因,是金属对定向运动电子的阻碍作用,具体可用金属导电理论理解。
  线圈对变化电流的阻碍作用,是由线圈的自感现象引起的,当通过线圈中的电流变化时,穿过线圈的磁通量发生变化,产生自感电动势。
  ②两种阻碍作用产生的效果不同
  在通电线圈中,电流稳定值为,由此可知线圈的稳态电阻决定了电流的稳定值。而越大,电流由零增大到稳定值的时间越长,也就是说,线圈对变化电流的阻碍作用越大,电流变化的越慢。总之,稳态电阻决定了电流所能达到的稳定值,对变化电流的阻碍作用决定了要达到稳定值所需的时间。
类型一、电磁感应中的图象问题
电磁感应中常涉及磁感应强度、磁通量、感应电动势和感应电流随时间变化的图象,即图象、图象、图象和图象。对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势和感应电流随线圈位移变化的图象,即图象和图象。
图象问题大体可分两类:由给定的电磁感应过程选出或画出正确图象,或由给定的有关图象分析电磁感应过程,求解相应的物理量。不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决。
例1.一个圆形闭合线圈固定在垂直纸面的匀强磁场中,线圈平面与磁场方向垂直,如图甲所示。设垂直于纸面向内的磁感应强度方向为正,垂直于纸面向外的磁感应强度方向为负。线圈中顺时针方向的感应电流为正,逆时针方向的感应电流为负。已知圆形线圈中感应电流随时间变化的图象如图乙所示,则线圈所在处的磁场的磁感应强度随时间变化的图象可能是选项中的(

【思路点拨】运用楞次定律,既要注意物理量的大小,又要注意物理量的方向。
【答案】CD
【解析】本题考查了楞次定律,由感应电流情况逆向推导磁感应强度的变化规律。因为C、D中前磁感应强度正向增加,感应电流的磁场向外,电流为逆时针,符合乙图前的情况,以后可以类推知,C、D正确。
【总结升华】图象问题既要注意物理量的大小,又要注意物理量的方向。
举一反三
【变式】某学生设计了一个验证法拉第电磁感应定律的实验,实验装置如图甲所示。在大线圈中放置一个小线圈,大线圈与多功能电源连接。多功能电源输入到大线圈的电流的周期为,且按图乙所示的规律变化,电流将在大线圈的内部产生变化的磁场,该磁场磁感应强度与线圈中电流的关系为(其中为常数)。小线圈与电流传感器连接,并可通过计算机处理数据后绘制出小线圈中感应电流随时间变化的图象。若仅将多功能电源输出电流变化的频率适当增大,则图丙所示各图象中可能正确反映图象变化的是(图丙中分别以实线和虚线表示调整前、后的图象)


例2.如图所示,一直角三角形金属框,向左匀速地穿过一个方向垂直于纸面向内的匀强磁场,磁场仅限于虚线边界所围的区域内,该区域的形状与金属框完全相同,且金属框的下边与磁场区域的下边在一条直线上。若取顺时针方向为电流的正方向,则金属框穿过磁场过程的感应电流i随时间t变化的图像是下图所示的(  )
【答案】C
【解析】根据楞次定律,在进磁场的过程中,感应电流的方向为逆时针方向,切割的有效长度线性增大,排除选项A、B;在出磁场的过程中,感应电流的方向为顺时针方向,切割的有效长度线性减小,排除D。故选项C正确。
举一反三
【变式】图中是一底边宽为的闭合线框,其电阻为。现使线框以恒定的速度沿轴向右运动,并穿过图中所示的宽度为的匀强磁场区域,已知,且在运动过程中线框平面始终与磁场方向垂直。若以轴正方向作为力的正方向,线框从图所示位置开始运动的时刻作为时间的零点,则在图所示的图像中,可能正确反映上述过程中磁场对线框的作用力随时间变化情况的是


例3.如图所示,一个边长为、电阻为的等边三角形线框,在外力作用下以速度匀速穿过宽度均为的两个匀强磁场,这两个磁场的磁感应强度大小均为,方向相反。线框运动方向与底边平行且与磁场边缘垂直。取逆时针方向的电流为正,试通过计算,画出从图示位置开始,线框中产生的感应电流与沿运动方向的位移之间的函数图象。
【答案】所求图象如图所示
【解析】本题考查了用图象来描述物理过程,解题关键是要注意到切割的有效长度在发生变化。
线框进入第一个磁场时,切割磁感线的有效长度在均匀变化。在位移由到过程中,切割有效长度由增到;在位移由到的过程中,切割有效长度由减到,在时,,电流为正。
线框穿越两磁场边界时,线框在两磁场中切割磁感线产生的感应电动势相等且同向,切割的有效长度也在均匀变化。在位移由到过程中,切割的有效长度由增到;在位移由到过程中,切割的有效长度由减到。在时,,电流为负。
线框移出第二个磁场时的情况与进入第一个磁场时相似。
【总结升华】画图象要做到规范,坐标原点、两轴表示的物理量(单位)、两轴上的标度及特殊值要标明。
类型二、用公式计算电荷量
闭合电路中的磁通量发生变化时,电路中将产生感应电流。设回路电阻为,穿过回路的磁通量为,回路中产生的感应电动势为,感应电流为,在时间内通过导线截面的电荷量为,则:
式中为线圈匝数,为磁通量的变化量,为闭合电路的总电阻。
若闭合电路为一个单匝线圈(),则:
由公式可以看出,电磁感应中时间内通过导线横截面的电荷量仅由线圈匝数、磁通量变化量和闭合电路的总电阻决定,与时间无关。
例4.如图所示,空间存在垂直于纸面的均匀磁场,在半径为的圆形区域内、外磁场的方向相反,磁感应强度的大小均为。一半径为、电阻为的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合。在内、外磁场同时由均匀地减小到零的过程中,通过导线截面的电荷量________。
【思路点拨】
先求,再由
求电量。
【答案】
【解析】本题考查求电磁感应现象中产生的电荷量。解题关键是正确求出回路的磁通量变化量。
由题意知:,




【总结升华】用公式求电荷量,关键是求出。本题中穿过导线环有相反方向的磁场,故应求穿过导线环的合磁通量。
类型三、电磁感应与电路
电磁感应与电路的综合题是常见的类型,解答此类问题时应注意:
(1)切割磁感线的导体相当于电源,与导体相连的回路的其他部分相当于外电路。
(2)解答时应画出等效电路图,然后根据闭合电路欧姆定律进行分析和计算。
例5.半径为的圆形区域内有均匀磁场,磁感应强度为,磁场方向垂直纸面向里,半径为的金属圆环与磁场同心地放置,磁场与环面垂直,其中,,金属环上分别接有灯、,两灯的电阻,一金属棒与金属环接触良好,棒与环的电阻均忽略不计。
(1)若棒的速度在环上向右匀速滑动,求棒滑过圆环直径瞬时(如图所示)中的电动势和通过灯的电流。
(2)撤去中间的金属棒,将右面的半圆环以为轴向上翻转,若此后磁场随时间均匀变化,其变化率为,求的功率。
【思路点拨】电动势的瞬时值,可用公式求解;磁场变化产生电动势,可用法拉第电磁感应定律求解。搞清楚电路结构,画出等效电路图。
【答案】(1)
(2)
【解析】本题考查用法拉第电琏感应定律和切割公式求电动势大小以及电路计算。关键要画好等效电路图。
(1)切割磁感线,相当于一个电源,根据右手定则可判断出等效电路如图所示。
    ,
   

(2)将右侧上翻后则,当穿过的磁通量发生变化时,根据楞次定律可判断出等效电路如图所示。
    

【总结升华】第(1)问求电动势的瞬时值,可用公式求解,第(2)问是磁场变化产生电动势,可用法拉第电磁感应定律求解。另外,搞清楚电路结构,画出等效电路图也很重要。
类型四、电磁感应与动力学的综合
电磁感应中产生的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问墅联系在一起,基本方法是:
(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。
(2)用闭合电路欧姆定律求回路中电流强度。
(3)分析研究导体受力情况。
(4)列动力学方程或平衡方程求解。
例6.如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为,在导轨的一端接有阻值为的电阻,在处有一与水平面垂直的均匀磁场,磁感应强度。一质量为的金属直杆垂直放置在导轨上,并以的初速度进入磁场,在安培力和一垂直于杆的水平外力的作用下做匀变速直线运动,加速度大小为,方向与初速度方向相反。设导轨和金属杆的电阻都可以忽略,且接触良好,求:
(1)电流为零时金属杆所处的位置;
(2)电流为最大值的一半时,施加在金属杆上的外力的大小和方向;
(3)保持其他条件不变,而初速度取不同值,求开始时的方向与初速度取值的关系。
【答案】见解析
【解析】(1)感应电动势

而,即时,,所以

(2)最大电流
,。
安培力

向右运动时:
,所以,
方向与轴正方向相反。
向左运动时:
,所以,
方向与轴正方向相反。
(3)开始时
,,
,。
所以
当时,
,方向与轴正方向相反。
当时,
,方向与轴正方向相同。
举一反三
【变式】如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为,导轨的端点用电阻可忽略的导线相连,两导轨间的距离.有随时间变化的匀强磁场垂直于桌面,已知磁感强度与时间的关系为,比例系数,一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直,在时刻,金属杆紧靠在端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在时金属杆所受的安培力.
例7.如图甲所示,在竖直向下的磁感应强度为的匀强磁场中,有两根水平放置相距且足够长的平行金属导轨、,在导体的端连接一阻值为的电阻,一根垂直于导轨放置的金属棒,质量为,导轨和金属棒的电阻及它们间的摩擦不计,若用恒力沿水平方向向右拉棒运动,求金属棒最大速度。
【思路点拨】这类题目的思路是“导体运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,速度达最大值。”
【答案】
【解析】本题综合考查电磁感应和力学知识,关键要做好棒的受力情况、运动情况的动态分析。
棒受恒力作用向右加速运动产生感应电流,电流在
磁场中受安培力安,如图乙所示。随,当金属棒所受合力为零时,加速度为零,速度最大。
当金属棒所受合力为零时,速度最大,此时








由①②③④得:


【总结升华】电磁感应力学问题中,要抓好受力情况、运动情况的动态分析,导体运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,速度达最大值。
例8.如图所示,竖直面内的正方形导线框ABCD和abcd的边长均为l、电阻均为R,质量分别为2m和m,它们分别系在一跨过两个定滑轮的绝缘轻绳两端,在两导线框之间有一宽度为2l、磁感应强度为B、方向垂直竖直面向里的匀强磁场.开始时ABCD的下边与匀强磁场的上边界重合,abcd的上边到匀强磁场的下边界的距离为l.现将系统由静止释放,当ABCD刚全部进入磁场时,系统开始做匀速运动.不计摩擦和空气阻力,求:
(1)系统匀速运动的速度大小;
(2)两导线框在从开始运动至等高的过程中所产生的总焦耳热;
(3)导线框abcd通过磁场的时间.
【答案】见解析
【解析】(1)如图所示,设两导线框刚匀速运动的速度为v、此时轻绳上的张力为T,则对ABCD有:
T=2mg

对abcd有:T=mg+BIl

I=

E=Blv

则v=.

(2)设两导线框在从开始运动至等高的过程中所产生的总焦耳热为Q,当左、右两导线框分别向上、向下运动2l的距离时,两导线框等高,对这一过程,由能量守恒定律有:
4mgl=2mgl+×3mv2+Q

联立⑤⑥解得Q=2mgl-.
(3)导线框abcd通过磁场时以速度v匀速运动,设导线框abcd通过磁场的时间为t,则
t=

联立⑤⑦解得:t=.
举一反三
【变式】近期《科学》中文版的文章介绍了一种新技术——航天飞缆,航天飞缆是用柔性缆索将两个物体连接起来在太空飞行的系统.飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理“太空垃圾”等.右图为飞缆系统的简化模型示意图,图中两个物体的质量分别为,柔性金属缆索长为,外有绝缘层,系统在近地轨道作圆周运动,运动过程中距地面高为.设缆索总保持指向地心,的速度为.已知地球半径为,地面的重力加速度为.
(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为,方向垂直于纸面向外.设缆索中无电流,问缆索哪端电势高?此问中可认为缆索各处的速度均近似等于,求两端的电势差;
(2)设缆索的电阻为,如果缆索两端物体通过周围的电离层放电形成电流,相应的电阻为,求缆索所受的安培力多大;
(3)求缆索对的拉力.

例9.如图所示,两金属杆和长均为,电阻均为,质量分别为和(),用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧。两金属杆都处在水平位置,整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为。若金属杆正好匀速向下运动,求其运动的速度。
【思路点拨】注意判断、切割磁感线产生的电动势的方向。
【答案】
【解析】本题综合考查电磁感应和力学知识,可采用隔离法或整体法等多种解法。
解法一:假设磁场的方向垂直纸面向里,杆向下匀速运动的速度为,则杆切割磁感线产生的感应电动势大小,方向;杆以速度向上切割磁感线运动产生的感应电动势大小,方向。
在闭合回路中产生方向的感应电流,据闭合电路欧姆定律知,,杆受磁场作用的安培力方向向上,杆受安培力方向向下,、的大小相等,有:


对杆应有,

对杆应有,

联立①②③解得。
解法二:若把、和柔软导线视为一个整体,因,故整体动力为。
向下、向上运动时,穿过闭合回路的磁通量发生变化,据电磁感应定律判断回路中产生感应电流,据楞次定律知,的磁场要阻碍原磁场的磁通量变化,即阻碍向下、向上运动,即为阻力。整体受的动力与安培力满足平衡条件,即:,则可解得如上结果。
解法三:整个回路视为一整体系统,因其速度大小不变,故动能不变,向下、向上运动过程中,因,系统的重力势能减少,将转化为回路的电能,据能量守恒定律,重力的机械功率(单位时间系统减少的重力势能)要等于电功率(单位时间转化回路的电能)。
所以有:,同样可解得为上值。
【总结升华】注意判断、切割磁感线产生的电动势同向,总电动势为,另外,题目结果和磁场垂直纸面向里、向外无关。
举一反三
【变式】超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图所示的模型:在水平面上相距的两根平行直导轨间,有竖直方向等距离分布的匀强磁场和,且,每个磁场的宽都是,相间排列,所有这些磁场都以速度向右匀速运动.这时跨在两导轨间的长为宽为的金属框(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为,运动中所受到的阻力恒为,则金属框的最大速度可表示为(

A.
B.
C.
D.
类型五、用能量观点解电磁感应问题
有一类求解回路中因电磁感应而产生的焦耳热问题,如果直接用求解,不是因为电流是变化的,时间是无法确定的,就是解答较复杂,从而导致求解困难。而利用能量守恒知识求解,往往使问题变得简单。
导体切割磁感线或磁通量发生变化而在回路中产生感应电流,机械能或其他形式的能量便转化为电能。感应电流在磁场中受到安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能。因此电磁感应的过程总是伴随着能量的转化,而且克服安培力做多少功,就有多少电能产生。对某些电磁感应问题,我们可以从能量转化的角度出发,运用能量转化和守恒定律、功能关系分析解决。
例10.如图所示,电动机牵引一根原来静止的、长、质量、电阻的导体棒,导体棒靠在处于磁感应强度、竖直放置的框架上。当导体棒上升高度时获得稳定速度,导体产生的热量为。电动机牵引棒时,电压表、电流表的读数分别为、。电动机内阻,不计框架电阻及一切摩擦,取。求:
(1)棒获得多大的稳定速度?
(2)棒从静止达到稳定速度所需要的时间。
【答案】(1)
(2)
【解析】电动机工作时,电能转化为机械能和电动机内阻的内能;导体棒在电动机牵引下上升,切割磁感线产生感应电动势,回路中出现感应电流,棒受到安培力,机械能有一部分转化为导体棒的内能;达到稳定速度时,棒受力平衡,牵引力。

(1)对电动机应用能量守恒定律有:,

其中,,,,,,,,①②式联立,且代入数据即可求得,棒所达到的稳定速度为。
(2)在棒从开始运动到达稳定速度的过程中,对棒应用能量守恒定律有:


其中,,,①③式联立解得完成此过程所需时间。
【总结升华】理清能量转化关系是解决该题的关键。
第I卷(选择题)
评卷人得分
一、单选题
1.铺设海底金属油气管道时,焊接管道需要先用感应加热的方法对焊口两侧进行预热.将被加热管道置于感应线圈中,当感应线圈中通以电流时管道发热.下列说法中正确的是(

A.管道发热是由于线圈中的电流直接流经管道引起的
B.感应加热是利用线圈电阻产生的焦耳热加热管道的
C.感应线圈中通以恒定电流时也能在管道中产生电流
D.感应线圈中通以正弦交流电在管道中产生的涡流也是交流电
2.面积S=4×10-2m2,匝数n=100匝的线圈,放在匀强磁场中且磁场方向垂直于线圈平面,磁感应强度B随时间t变化的规律如图所示,下列判断正确的是
(  )
A.在开始的2
s内穿过线圈的磁通量变化率等于0.08
Wb/s
B.在开始的2
s内穿过线圈的磁通量的变化量等于零
C.在开始的2
s内线圈中产生的感应电动势等于0.08
V
D.在第3
s末线圈中的感应电动势等于零
3.如图所示,金属杆ab以一定的初速度从倾斜、光滑的固定平行金属导轨底端向上滑行,一段时间后义回到导轨底端。已知两导轨上端连有一阻值为R的电阻,导轨间有垂直于导轨平面向上的匀强磁场。下列分析正确的是(

A.金属杆向上滑行与向下滑行的时间相等
B.金属杆向上滑行时,通过金属杆的电流方向从b到a
C.金属杆向上滑行时,通过电阻R的电荷量大于向下滑行时通过电阻R的电荷量
D.金属杆刚向上滑行时受到的安培力大于刚回到导轨底端时受到的安培力
4.下列各图所描述的物理情境中,没有感应电流的是(  )
A.开关S闭合稳定后,线圈N中
B.磁铁向铝环A靠近,铝环A中
C.金属框从A向B运动,金属框中
D.铜盘在磁场中按图示方向转动,电阻R中
5.如图所示,先后以速度和匀速把一正方形线圈拉出有界的匀强磁场区域,,在先后两种情况下,下列说法正确的是(

A.线圈中的感应电流之比
B.作用在线圈上的外力大小之比
C.线圈中产生的焦耳热之比
D.通过线圈某一截面的电荷量之比
6.如图所示,平行金属导轨放在匀强磁场中,导轨的电阻不计,左端接一灵敏电流表G,具有一定电阻的导体棒AB垂直导轨放置且与导轨接触良好,在力F作用下做匀加速直线运动,导轨足够长,则通过电流表G中的电流大小和方向是
A.G中电流向上,逐渐增大
B.G中电流向下,逐渐增大
C.G中电流向上,逐渐不变
D.G中电流向上,逐渐不变
7.如图所示,先后以速度v1和v2匀速把一矩形线框拉出有界的匀强磁场区域,且v2=2v1,用F1、I1、Q1、q1表示用速度v1把线框拉出磁场时,作用在线框上的力、通过线框的电流、导线框产生的热量和通过导线框的电荷量,用F2、I2、Q2、q2表示用速度v2把线框拉出磁场时,作用在线框上的力、通过线框的电流、导线框产生的热量和通过导线框的电荷量,则(

A.F1:F2=1:4
B.q1:q2=1:1
C.Q1:Q2=1:4
D.I1:I2=1:1
评卷人得分
二、多选题
8.主持节目、演唱常用到话筒,其中有一种动圈式话筒,其工作原理是在弹性膜片后面粘接一个轻小的金属线圈,线圈处于永磁体的磁场中,当声波使膜片前后振动时,就将声音信号转变为电信号下列说法正确的是  
A.该传感器是根据电流的磁效应工作的
B.该传感器是根据电磁感应原理工作的
C.膜片振动时,穿过金属线圈的磁通量会改变
D.膜片振动时,金属线圈中不会产生感应电流
9.如图所示,一导线弯成半径为a的半圆形闭合回路。虚线MN右侧有磁感应强度为B的匀强磁场,方向垂直于半圆形回路所在的平面。半圆形回路以速度v向右匀速进入磁场,直径CD始终与MN垂直。从D点到达边界开始到C点进入磁场为止,下列结论正确的是(

A.感应电流方向始终沿顺时针方向
B.CD段直导线始终受安培力作用
C.感应电动势最大值Em=Bav
D.感应电动势平均值E=πBav
10.如图甲所示,左侧接有定值电阻R=3Ω的水平粗糙导轨处于垂直纸面向外的匀强磁场中,磁感应强度B=2T,导轨间距为L=1m.一质量m=2kg、接入电路的阻值r=1Ω的金属棒在拉力F作用下由静止开始从CD处沿导轨向右加速运动,金属棒与导轨垂直且接触良好,金属棒与导轨间的动摩擦因数μ=0.5,g=10m/s2,金属棒的v-x图象如图乙所示,则从起点发生x=1m位移的过程中
A.拉力做的功为16J
B.通过电阻R的电荷量为0.25C
C.定值电阻R产生的焦耳热为0.75J
D.所用的时间t一定大于1s
第II卷(非选择题)
评卷人得分
三、解答题
11.如图所示,先后以速度和,匀速地把同一线圈从同一位置拉出有界匀强磁场的过程中,在先后两种情况下:
(1)线圈中的感应电流之比
(2)线圈中通过的电量之比
(3)拉力做功的功率之比.
12.如图所示,足够长的光滑平行金属导轨JK、PQ倾斜放置,两导轨间距离为L=1.0m,导轨平面与水平面间的夹角为θ=30°,磁感应强度为B=1.0T的匀强磁场垂直于导轨平面向上,导轨的J、P两端连接阻值为R=1.5Ω的电阻,金属棒ab垂直于导轨放置,质量m=0.20kg,电阻r=0.5Ω,现对棒施加平行斜面向上大小为6N的恒力F,使其由静止开始运动,经t=1.0s时达到最大速度,不计导轨电阻,g=10m/s2.求:
(1)金属棒ab的最大速度及此时ab两端的电压;
(2)金属棒由静止到速度最大时通过的位移.
26专题十二
电磁感应(解析版)
要点一、关于磁通量,磁通量的变化、磁通量的变化率
1、磁通量
  磁通量,是一个标量,但有正、负之分。
  可以形象地理解为穿过某面积磁感线的净条数。
  2、磁通量的变化
  磁通量的变化.
  要点诠释:
的值可能是、绝对值的差,也可能是绝对值的和。例如当一个线圈从与磁感线垂直的位置转动的过程中.
  3、磁通量的变化率
  磁通量的变化率表示磁通量变化的快慢,它是回路感应电动势的大小的决定因素。
    ,
  在回路面积和位置不变时(叫磁感应强度的变化率);
  在B均匀不变时,与线圈的匝数无关。
要点二、关于楞次定律
  (1)定律内容:感应电流具有这样的方向:感应电流的磁场总是阻碍引起感应电流的磁通量发生变化。
  (2)感应电流方向的决定因素是:电路所包围的引起感应电流的磁场的方向和磁通量的增减情况。
  (3)楞次定律适用范围:适用于所有电磁感应现象。
  (4)应用楞次定律判断感应电流产生的力学效果(楞次定律的变式说法):感应电流受到的安培力总是阻碍线圈或导体棒与磁场的相对运动,即线圈与磁场靠近时则相斥,远离时则相吸。
  (5)楞次定律是能的转化和守恒定律的必然结果。
要点三、法拉第电磁感应定律
  电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即.
  要点诠释:
对匝线圈有.
  (1)是时间内的平均感应电动势,当时,转化为瞬时感应电动势。
  (2)适应于任何感应电动势的计算,导体切割磁感线时.,
    
自感电动势都是应用而获得的结果。
  (3)感应电动势的计算,其中是磁感强度的变化率,是图线的斜率。
要点四、电磁感应中电路问题的解题方法
  当闭合电路的磁通量发生变化或有部分导体切割磁感线运动时,闭合电路中出现感应电流,对连接在闭合电路中的各种用电器供电,求电流、电压、电阻、电功率等,是一种基本的常见的习题类型——电磁感应中的电路问题。
  解决这类问题的基本步骤是:
  (1)明确哪一部分导体或电路产生感应电动势,则该导体或电路就是电源。
  (2)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。
  (3)正确分析电路结构,并画出等效电路图。
  (4)综合应用电路的知识、方法解题。
要点五、电磁感应中力学问题解题方法
  电磁感应中通过导体的感应电流,在磁场中将受到安培力的作用,从而影响其运动状态,故电磁感应问题往往跟力学问题联系在一起。解决此类问题要将电磁学知识和力学知识综合起来应用。
  其解题一般思路是:
  (1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。
  (2)根据欧姆定律求感应电流。
  (3)分析导体受力情况(包含安培力,用左手定则确定其方向)。
  (4)应用力学规律列方程求解。
  电磁感应中的力学问题比纯力学问题多一个安培力,处理方法与纯力学问题基本相同,但应注意安培力的大小和方向的确定。
要点六、电磁感应中能量转化问题
  1、电磁感应中涉及的功能关系有:
  (1)克服安培力做功是将其他形式的能量转化为电能,且克服安培力做多少功,就有多少其他形式的能量转化为电能。
  (2)感应电流通过电阻或者安培力做功,又可使电能转化为电阻的内能或机械能,且做多少功就转化多少能量。
  2、主要解题方法有:
  ①运用功的定义求解;②运用功能关系求解;③运用能的转化及守恒定律求解。
  3、在电磁感应现象的问题中,常碰到这样的问题:
  外力克服安培力做功,就有其他形式的能量(如机械能)转化为电能,而电能又通过电路全部转化为内能(焦耳热),对这样的情形就有如下的关系:.
要点七、关于自感现象的研究
  1、在断电自感中,灯泡更亮一下的条件是什么?
  设开关闭合时,电源路端电压为,线圈的电阻为,灯泡的电阻为,则通过线圈的电流为。当开关断开后,线圈和灯泡组成的回路中的电流从开始减弱。
  若,有,在断开开关的瞬间,通过灯泡的电流会瞬时增大,灯泡会更亮一下。若有,断开开关后,通过灯泡的电流减小,灯泡不会更亮一下。           
       
  2、线圈对变化电流的阻碍作用与对稳定电流的阻碍作用有何不同?
  ①两种阻碍作用产生的原因不同。
  线圈对稳定电流的阻碍作用,是由绕制线圈的导线的电阻决定的,对稳定电流阻碍作用的产生原因,是金属对定向运动电子的阻碍作用,具体可用金属导电理论理解。
  线圈对变化电流的阻碍作用,是由线圈的自感现象引起的,当通过线圈中的电流变化时,穿过线圈的磁通量发生变化,产生自感电动势。
  ②两种阻碍作用产生的效果不同
  在通电线圈中,电流稳定值为,由此可知线圈的稳态电阻决定了电流的稳定值。而越大,电流由零增大到稳定值的时间越长,也就是说,线圈对变化电流的阻碍作用越大,电流变化的越慢。总之,稳态电阻决定了电流所能达到的稳定值,对变化电流的阻碍作用决定了要达到稳定值所需的时间。
类型一、电磁感应中的图象问题
电磁感应中常涉及磁感应强度、磁通量、感应电动势和感应电流随时间变化的图象,即图象、图象、图象和图象。对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势和感应电流随线圈位移变化的图象,即图象和图象。
图象问题大体可分两类:由给定的电磁感应过程选出或画出正确图象,或由给定的有关图象分析电磁感应过程,求解相应的物理量。不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决。
例1.一个圆形闭合线圈固定在垂直纸面的匀强磁场中,线圈平面与磁场方向垂直,如图甲所示。设垂直于纸面向内的磁感应强度方向为正,垂直于纸面向外的磁感应强度方向为负。线圈中顺时针方向的感应电流为正,逆时针方向的感应电流为负。已知圆形线圈中感应电流随时间变化的图象如图乙所示,则线圈所在处的磁场的磁感应强度随时间变化的图象可能是选项中的(

【思路点拨】运用楞次定律,既要注意物理量的大小,又要注意物理量的方向。
【答案】CD
【解析】本题考查了楞次定律,由感应电流情况逆向推导磁感应强度的变化规律。因为C、D中前磁感应强度正向增加,感应电流的磁场向外,电流为逆时针,符合乙图前的情况,以后可以类推知,C、D正确。
【总结升华】图象问题既要注意物理量的大小,又要注意物理量的方向。
举一反三
【变式】某学生设计了一个验证法拉第电磁感应定律的实验,实验装置如图甲所示。在大线圈中放置一个小线圈,大线圈与多功能电源连接。多功能电源输入到大线圈的电流的周期为,且按图乙所示的规律变化,电流将在大线圈的内部产生变化的磁场,该磁场磁感应强度与线圈中电流的关系为(其中为常数)。小线圈与电流传感器连接,并可通过计算机处理数据后绘制出小线圈中感应电流随时间变化的图象。若仅将多功能电源输出电流变化的频率适当增大,则图丙所示各图象中可能正确反映图象变化的是(图丙中分别以实线和虚线表示调整前、后的图象)


【答案】D
例2.如图所示,一直角三角形金属框,向左匀速地穿过一个方向垂直于纸面向内的匀强磁场,磁场仅限于虚线边界所围的区域内,该区域的形状与金属框完全相同,且金属框的下边与磁场区域的下边在一条直线上。若取顺时针方向为电流的正方向,则金属框穿过磁场过程的感应电流i随时间t变化的图像是下图所示的(  )
【答案】C
【解析】根据楞次定律,在进磁场的过程中,感应电流的方向为逆时针方向,切割的有效长度线性增大,排除选项A、B;在出磁场的过程中,感应电流的方向为顺时针方向,切割的有效长度线性减小,排除D。故选项C正确。
举一反三
【变式】图中是一底边宽为的闭合线框,其电阻为。现使线框以恒定的速度沿轴向右运动,并穿过图中所示的宽度为的匀强磁场区域,已知,且在运动过程中线框平面始终与磁场方向垂直。若以轴正方向作为力的正方向,线框从图所示位置开始运动的时刻作为时间的零点,则在图所示的图像中,可能正确反映上述过程中磁场对线框的作用力随时间变化情况的是


【答案】D
例3.如图所示,一个边长为、电阻为的等边三角形线框,在外力作用下以速度匀速穿过宽度均为的两个匀强磁场,这两个磁场的磁感应强度大小均为,方向相反。线框运动方向与底边平行且与磁场边缘垂直。取逆时针方向的电流为正,试通过计算,画出从图示位置开始,线框中产生的感应电流与沿运动方向的位移之间的函数图象。
【答案】所求图象如图所示
【解析】本题考查了用图象来描述物理过程,解题关键是要注意到切割的有效长度在发生变化。
线框进入第一个磁场时,切割磁感线的有效长度在均匀变化。在位移由到过程中,切割有效长度由增到;在位移由到的过程中,切割有效长度由减到,在时,,电流为正。
线框穿越两磁场边界时,线框在两磁场中切割磁感线产生的感应电动势相等且同向,切割的有效长度也在均匀变化。在位移由到过程中,切割的有效长度由增到;在位移由到过程中,切割的有效长度由减到。在时,,电流为负。
线框移出第二个磁场时的情况与进入第一个磁场时相似。
【总结升华】画图象要做到规范,坐标原点、两轴表示的物理量(单位)、两轴上的标度及特殊值要标明。
类型二、用公式计算电荷量
闭合电路中的磁通量发生变化时,电路中将产生感应电流。设回路电阻为,穿过回路的磁通量为,回路中产生的感应电动势为,感应电流为,在时间内通过导线截面的电荷量为,则:
式中为线圈匝数,为磁通量的变化量,为闭合电路的总电阻。
若闭合电路为一个单匝线圈(),则:
由公式可以看出,电磁感应中时间内通过导线横截面的电荷量仅由线圈匝数、磁通量变化量和闭合电路的总电阻决定,与时间无关。
例4.如图所示,空间存在垂直于纸面的均匀磁场,在半径为的圆形区域内、外磁场的方向相反,磁感应强度的大小均为。一半径为、电阻为的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合。在内、外磁场同时由均匀地减小到零的过程中,通过导线截面的电荷量________。
【思路点拨】
先求,再由
求电量。
【答案】
【解析】本题考查求电磁感应现象中产生的电荷量。解题关键是正确求出回路的磁通量变化量。
由题意知:,




【总结升华】用公式求电荷量,关键是求出。本题中穿过导线环有相反方向的磁场,故应求穿过导线环的合磁通量。
类型三、电磁感应与电路
电磁感应与电路的综合题是常见的类型,解答此类问题时应注意:
(1)切割磁感线的导体相当于电源,与导体相连的回路的其他部分相当于外电路。
(2)解答时应画出等效电路图,然后根据闭合电路欧姆定律进行分析和计算。
例5.半径为的圆形区域内有均匀磁场,磁感应强度为,磁场方向垂直纸面向里,半径为的金属圆环与磁场同心地放置,磁场与环面垂直,其中,,金属环上分别接有灯、,两灯的电阻,一金属棒与金属环接触良好,棒与环的电阻均忽略不计。
(1)若棒的速度在环上向右匀速滑动,求棒滑过圆环直径瞬时(如图所示)中的电动势和通过灯的电流。
(2)撤去中间的金属棒,将右面的半圆环以为轴向上翻转,若此后磁场随时间均匀变化,其变化率为,求的功率。
【思路点拨】电动势的瞬时值,可用公式求解;磁场变化产生电动势,可用法拉第电磁感应定律求解。搞清楚电路结构,画出等效电路图。
【答案】(1)
(2)
【解析】本题考查用法拉第电琏感应定律和切割公式求电动势大小以及电路计算。关键要画好等效电路图。
(1)切割磁感线,相当于一个电源,根据右手定则可判断出等效电路如图所示。
    ,
   

(2)将右侧上翻后则,当穿过的磁通量发生变化时,根据楞次定律可判断出等效电路如图所示。
    

【总结升华】第(1)问求电动势的瞬时值,可用公式求解,第(2)问是磁场变化产生电动势,可用法拉第电磁感应定律求解。另外,搞清楚电路结构,画出等效电路图也很重要。
类型四、电磁感应与动力学的综合
电磁感应中产生的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问墅联系在一起,基本方法是:
(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。
(2)用闭合电路欧姆定律求回路中电流强度。
(3)分析研究导体受力情况。
(4)列动力学方程或平衡方程求解。
例6.如图所示,两条互相平行的光滑金属导轨位于水平面内,距离为,在导轨的一端接有阻值为的电阻,在处有一与水平面垂直的均匀磁场,磁感应强度。一质量为的金属直杆垂直放置在导轨上,并以的初速度进入磁场,在安培力和一垂直于杆的水平外力的作用下做匀变速直线运动,加速度大小为,方向与初速度方向相反。设导轨和金属杆的电阻都可以忽略,且接触良好,求:
(1)电流为零时金属杆所处的位置;
(2)电流为最大值的一半时,施加在金属杆上的外力的大小和方向;
(3)保持其他条件不变,而初速度取不同值,求开始时的方向与初速度取值的关系。
【答案】见解析
【解析】(1)感应电动势

而,即时,,所以

(2)最大电流
,。
安培力

向右运动时:
,所以,
方向与轴正方向相反。
向左运动时:
,所以,
方向与轴正方向相反。
(3)开始时
,,
,。
所以
当时,
,方向与轴正方向相反。
当时,
,方向与轴正方向相同。
举一反三
【变式】如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为,导轨的端点用电阻可忽略的导线相连,两导轨间的距离.有随时间变化的匀强磁场垂直于桌面,已知磁感强度与时间的关系为,比例系数,一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直,在时刻,金属杆紧靠在端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在时金属杆所受的安培力.
【答案】
【解析】以表示金属杆运动的加速度,在时刻,金属杆与初始位置的距离

此时杆的速度

杆与导轨构成的回路的面积

回路中的感应电动势
而,故
回路的总电阻
回路中的感应电流
作用于杆的安培力
联立以上各式解得

代入数据得.
例7.如图甲所示,在竖直向下的磁感应强度为的匀强磁场中,有两根水平放置相距且足够长的平行金属导轨、,在导体的端连接一阻值为的电阻,一根垂直于导轨放置的金属棒,质量为,导轨和金属棒的电阻及它们间的摩擦不计,若用恒力沿水平方向向右拉棒运动,求金属棒最大速度。
【思路点拨】这类题目的思路是“导体运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,速度达最大值。”
【答案】
【解析】本题综合考查电磁感应和力学知识,关键要做好棒的受力情况、运动情况的动态分析。
棒受恒力作用向右加速运动产生感应电流,电流在
磁场中受安培力安,如图乙所示。随,当金属棒所受合力为零时,加速度为零,速度最大。
当金属棒所受合力为零时,速度最大,此时








由①②③④得:


【总结升华】电磁感应力学问题中,要抓好受力情况、运动情况的动态分析,导体运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,速度达最大值。
例8.如图所示,竖直面内的正方形导线框ABCD和abcd的边长均为l、电阻均为R,质量分别为2m和m,它们分别系在一跨过两个定滑轮的绝缘轻绳两端,在两导线框之间有一宽度为2l、磁感应强度为B、方向垂直竖直面向里的匀强磁场.开始时ABCD的下边与匀强磁场的上边界重合,abcd的上边到匀强磁场的下边界的距离为l.现将系统由静止释放,当ABCD刚全部进入磁场时,系统开始做匀速运动.不计摩擦和空气阻力,求:
(1)系统匀速运动的速度大小;
(2)两导线框在从开始运动至等高的过程中所产生的总焦耳热;
(3)导线框abcd通过磁场的时间.
【答案】见解析
【解析】(1)如图所示,设两导线框刚匀速运动的速度为v、此时轻绳上的张力为T,则对ABCD有:
T=2mg

对abcd有:T=mg+BIl

I=

E=Blv

则v=.

(2)设两导线框在从开始运动至等高的过程中所产生的总焦耳热为Q,当左、右两导线框分别向上、向下运动2l的距离时,两导线框等高,对这一过程,由能量守恒定律有:
4mgl=2mgl+×3mv2+Q

联立⑤⑥解得Q=2mgl-.
(3)导线框abcd通过磁场时以速度v匀速运动,设导线框abcd通过磁场的时间为t,则
t=

联立⑤⑦解得:t=.
举一反三
【变式】近期《科学》中文版的文章介绍了一种新技术——航天飞缆,航天飞缆是用柔性缆索将两个物体连接起来在太空飞行的系统.飞缆系统在太空飞行中能为自身提供电能和拖曳力,它还能清理“太空垃圾”等.右图为飞缆系统的简化模型示意图,图中两个物体的质量分别为,柔性金属缆索长为,外有绝缘层,系统在近地轨道作圆周运动,运动过程中距地面高为.设缆索总保持指向地心,的速度为.已知地球半径为,地面的重力加速度为.
(1)飞缆系统在地磁场中运动,地磁场在缆索所在处的磁感应强度大小为,方向垂直于纸面向外.设缆索中无电流,问缆索哪端电势高?此问中可认为缆索各处的速度均近似等于,求两端的电势差;
(2)设缆索的电阻为,如果缆索两端物体通过周围的电离层放电形成电流,相应的电阻为,求缆索所受的安培力多大;
(3)求缆索对的拉力.
【答案】(1) (2) (3)
【解析】(1)缆索的电动势
两点电势差
点电势高.
(2)缆索电流
安培力
(3)的速度设为,受地球引力和缆索拉力作用
角速度相等,则

联立各式,解得

例9.如图所示,两金属杆和长均为,电阻均为,质量分别为和(),用两根质量和电阻均可忽略的不可伸长的柔软导线将它们连成闭合回路,并悬挂在水平、光滑、不导电的圆棒两侧。两金属杆都处在水平位置,整个装置处在一与回路平面相垂直的匀强磁场中,磁感应强度为。若金属杆正好匀速向下运动,求其运动的速度。
【思路点拨】注意判断、切割磁感线产生的电动势的方向。
【答案】
【解析】本题综合考查电磁感应和力学知识,可采用隔离法或整体法等多种解法。
解法一:假设磁场的方向垂直纸面向里,杆向下匀速运动的速度为,则杆切割磁感线产生的感应电动势大小,方向;杆以速度向上切割磁感线运动产生的感应电动势大小,方向。
在闭合回路中产生方向的感应电流,据闭合电路欧姆定律知,,杆受磁场作用的安培力方向向上,杆受安培力方向向下,、的大小相等,有:


对杆应有,

对杆应有,

联立①②③解得。
解法二:若把、和柔软导线视为一个整体,因,故整体动力为。
向下、向上运动时,穿过闭合回路的磁通量发生变化,据电磁感应定律判断回路中产生感应电流,据楞次定律知,的磁场要阻碍原磁场的磁通量变化,即阻碍向下、向上运动,即为阻力。整体受的动力与安培力满足平衡条件,即:,则可解得如上结果。
解法三:整个回路视为一整体系统,因其速度大小不变,故动能不变,向下、向上运动过程中,因,系统的重力势能减少,将转化为回路的电能,据能量守恒定律,重力的机械功率(单位时间系统减少的重力势能)要等于电功率(单位时间转化回路的电能)。
所以有:,同样可解得为上值。
【总结升华】注意判断、切割磁感线产生的电动势同向,总电动势为,另外,题目结果和磁场垂直纸面向里、向外无关。
举一反三
【变式】超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图所示的模型:在水平面上相距的两根平行直导轨间,有竖直方向等距离分布的匀强磁场和,且,每个磁场的宽都是,相间排列,所有这些磁场都以速度向右匀速运动.这时跨在两导轨间的长为宽为的金属框(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为,运动中所受到的阻力恒为,则金属框的最大速度可表示为(

A.
B.
C.
D.
【答案】D
【解析】设金属框做匀速运动的速度为,则线框的感应电动势
安培力与阻力平衡
解得:

类型五、用能量观点解电磁感应问题
有一类求解回路中因电磁感应而产生的焦耳热问题,如果直接用求解,不是因为电流是变化的,时间是无法确定的,就是解答较复杂,从而导致求解困难。而利用能量守恒知识求解,往往使问题变得简单。
导体切割磁感线或磁通量发生变化而在回路中产生感应电流,机械能或其他形式的能量便转化为电能。感应电流在磁场中受到安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能。因此电磁感应的过程总是伴随着能量的转化,而且克服安培力做多少功,就有多少电能产生。对某些电磁感应问题,我们可以从能量转化的角度出发,运用能量转化和守恒定律、功能关系分析解决。
例10.如图所示,电动机牵引一根原来静止的、长、质量、电阻的导体棒,导体棒靠在处于磁感应强度、竖直放置的框架上。当导体棒上升高度时获得稳定速度,导体产生的热量为。电动机牵引棒时,电压表、电流表的读数分别为、。电动机内阻,不计框架电阻及一切摩擦,取。求:
(1)棒获得多大的稳定速度?
(2)棒从静止达到稳定速度所需要的时间。
【答案】(1)
(2)
【解析】电动机工作时,电能转化为机械能和电动机内阻的内能;导体棒在电动机牵引下上升,切割磁感线产生感应电动势,回路中出现感应电流,棒受到安培力,机械能有一部分转化为导体棒的内能;达到稳定速度时,棒受力平衡,牵引力。

(1)对电动机应用能量守恒定律有:,

其中,,,,,,,,①②式联立,且代入数据即可求得,棒所达到的稳定速度为。
(2)在棒从开始运动到达稳定速度的过程中,对棒应用能量守恒定律有:


其中,,,①③式联立解得完成此过程所需时间。
【总结升华】理清能量转化关系是解决该题的关键。
第I卷(选择题)
评卷人
得分
一、单选题
1.铺设海底金属油气管道时,焊接管道需要先用感应加热的方法对焊口两侧进行预热.将被加热管道置于感应线圈中,当感应线圈中通以电流时管道发热.下列说法中正确的是(

A.管道发热是由于线圈中的电流直接流经管道引起的
B.感应加热是利用线圈电阻产生的焦耳热加热管道的
C.感应线圈中通以恒定电流时也能在管道中产生电流
D.感应线圈中通以正弦交流电在管道中产生的涡流也是交流电
【答案】D
【详解】
高频焊接利用高频交变电流产生高频交变磁场,在焊接的金属工件中就产生感应电流,根据法拉第电磁感应定律分析可知,电流变化的频率越高,磁通量变化频率越高,产生的感应电动势越大,感应电流越大,焊缝处的温度升高的越快.管道发热是由于线圈的作用,导致管道有涡流,A错误;感应加热是利用线圈变化的磁场,从而产生感应电场,形成涡流,B错误;感应线圈中通以正弦交流电在管道中产生的涡流也是交流电,C错误D正确.
【点睛】
高频焊接利用高频交变电流产生高频交变磁场,在焊接的金属工件中就产生感应电流,根据法拉第电磁感应定律分析电流变化的频率与焊缝处的温度升高的关系.焊缝处横截面积小,电阻大,电流相同,焊缝处热功率大,温度升的很高.
2.面积S=4×10-2m2,匝数n=100匝的线圈,放在匀强磁场中且磁场方向垂直于线圈平面,磁感应强度B随时间t变化的规律如图所示,下列判断正确的是
(  )
A.在开始的2
s内穿过线圈的磁通量变化率等于0.08
Wb/s
B.在开始的2
s内穿过线圈的磁通量的变化量等于零
C.在开始的2
s内线圈中产生的感应电动势等于0.08
V
D.在第3
s末线圈中的感应电动势等于零
【答案】A
【详解】
A.磁通量的变化率为,A正确;
B.磁通量的变化为,B错误;
C.感应电动势应为磁通量的变化率乘以线圈的匝数,为8V,C错误;
D.在第3
s末,磁场的大小为零,但是此时磁通量的变化率不为零,故此时的感应电动势不为零,D错误.
3.如图所示,金属杆ab以一定的初速度从倾斜、光滑的固定平行金属导轨底端向上滑行,一段时间后义回到导轨底端。已知两导轨上端连有一阻值为R的电阻,导轨间有垂直于导轨平面向上的匀强磁场。下列分析正确的是(

A.金属杆向上滑行与向下滑行的时间相等
B.金属杆向上滑行时,通过金属杆的电流方向从b到a
C.金属杆向上滑行时,通过电阻R的电荷量大于向下滑行时通过电阻R的电荷量
D.金属杆刚向上滑行时受到的安培力大于刚回到导轨底端时受到的安培力
【答案】D
【详解】
A.金属杆向上滑行时合力大于向下滑行时的合力,所以向上滑行时的加速度较大,两次位移相等,向上滑行的平均速度大,向下滑行的平均速度小,金属杆向上滑行的时间较短,故A错误;
B.由右手定则可判断金属杆向上滑行时感应电流的方向为从a到b,故B错误;
C.由公式
可知,金属杆上滑时通过电阻的电荷量与下滑时的相等,故C错误;
D.感应电动势E=BLv,安培力F=BIL,可得
由于金属杆滑动过程中有机械能损失,故金属杆开始上滑时的速度比回到斜面底端时的速度大,金属杆刚向上滑行时受到的安培力大于刚回到导轨底端时受到的安培力,故D正确。
故选D。
4.下列各图所描述的物理情境中,没有感应电流的是(  )
A.开关S闭合稳定后,线圈N中
B.磁铁向铝环A靠近,铝环A中
C.金属框从A向B运动,金属框中
D.铜盘在磁场中按图示方向转动,电阻R中
【答案】A
【详解】
A.图中开关S闭合稳定后,线圈N中磁通量不变,不会产生感应电流,选项A符合题意;
B.图中磁铁向铝环A靠近,铝环A中磁通量增加,会产生感应电流,选项B不符合题意;
C.图中金属框从A向B运动,金属框中磁通量变化,会产生感应电流,选项C不符合题意;
D.图中铜盘在磁场中按图示方向转动,圆盘中的“半径”切割磁感线会在电阻R中产生感应电流,选项D不符合题意。
故选A。
5.如图所示,先后以速度和匀速把一正方形线圈拉出有界的匀强磁场区域,,在先后两种情况下,下列说法正确的是(

A.线圈中的感应电流之比
B.作用在线圈上的外力大小之比
C.线圈中产生的焦耳热之比
D.通过线圈某一截面的电荷量之比
【答案】B
【解析】
由感应电动势E=BLv可知电动势之比为1:2,电流之比为1:2,A错;电荷量,电荷量之比为1:1,
D错;由焦耳热公式可知B错;由安培力公式F=BIL,可知C对;
6.如图所示,平行金属导轨放在匀强磁场中,导轨的电阻不计,左端接一灵敏电流表G,具有一定电阻的导体棒AB垂直导轨放置且与导轨接触良好,在力F作用下做匀加速直线运动,导轨足够长,则通过电流表G中的电流大小和方向是
A.G中电流向上,逐渐增大
B.G中电流向下,逐渐增大
C.G中电流向上,逐渐不变
D.G中电流向上,逐渐不变
【答案】B
【解析】根据右手定则可知,G中的电流由上到下;根据E=BLv可知,速度增大,E变大,电流I变大,故选B.
7.如图所示,先后以速度v1和v2匀速把一矩形线框拉出有界的匀强磁场区域,且v2=2v1,用F1、I1、Q1、q1表示用速度v1把线框拉出磁场时,作用在线框上的力、通过线框的电流、导线框产生的热量和通过导线框的电荷量,用F2、I2、Q2、q2表示用速度v2把线框拉出磁场时,作用在线框上的力、通过线框的电流、导线框产生的热量和通过导线框的电荷量,则(

A.F1:F2=1:4
B.q1:q2=1:1
C.Q1:Q2=1:4
D.I1:I2=1:1
【答案】B
【解析】
【详解】
匀速运动时,作用在线圈上的外力大小等于安培力大小,,可知F∝v,则知:F1:F2=1:2,故A错误;根据,因磁通量的变化相等,可知通过某截面的电荷量之比为1:1,故B正确.焦耳热,可知,热量之比为1:2,故C错误;根据E=BLv,得感应电流,可知感应电流
I∝v,所以感应电流之比I1:I2=1:2,故D错误.
评卷人
得分
二、多选题
8.主持节目、演唱常用到话筒,其中有一种动圈式话筒,其工作原理是在弹性膜片后面粘接一个轻小的金属线圈,线圈处于永磁体的磁场中,当声波使膜片前后振动时,就将声音信号转变为电信号下列说法正确的是  
A.该传感器是根据电流的磁效应工作的
B.该传感器是根据电磁感应原理工作的
C.膜片振动时,穿过金属线圈的磁通量会改变
D.膜片振动时,金属线圈中不会产生感应电流
【答案】BC
【解析】
当声波使膜片前后振动时,线圈切割磁感线产生感应电流,将声音信号变化电信号,是根据电磁感应原理工作的,A错误B正确;膜片振动时,与之相连的线圈的长度发生变化,穿过金属线圈的磁通量会改变,同时应用金属线圈切割磁感线,会产生感应电动势和感应电流,C正确D错误.
9.如图所示,一导线弯成半径为a的半圆形闭合回路。虚线MN右侧有磁感应强度为B的匀强磁场,方向垂直于半圆形回路所在的平面。半圆形回路以速度v向右匀速进入磁场,直径CD始终与MN垂直。从D点到达边界开始到C点进入磁场为止,下列结论正确的是(

A.感应电流方向始终沿顺时针方向
B.CD段直导线始终受安培力作用
C.感应电动势最大值Em=Bav
D.感应电动势平均值E=πBav
【答案】BC
【详解】
A.由楞次定律可判定感应电流始终沿逆时针方向,故A错误;
B.由左手定则知CD段直导线始终受安培力,故B正确;
C.当有一半进入磁场时,切割磁感线的有效长度最大,最大感应电动势为
Em=Bav
选项C正确;
D.根据法拉第电磁感应定律可得感应电动势平均值
选项D错误。故选BC。
10.如图甲所示,左侧接有定值电阻R=3Ω的水平粗糙导轨处于垂直纸面向外的匀强磁场中,磁感应强度B=2T,导轨间距为L=1m.一质量m=2kg、接入电路的阻值r=1Ω的金属棒在拉力F作用下由静止开始从CD处沿导轨向右加速运动,金属棒与导轨垂直且接触良好,金属棒与导轨间的动摩擦因数μ=0.5,g=10m/s2,金属棒的v-x图象如图乙所示,则从起点发生x=1m位移的过程中
A.拉力做的功为16J
B.通过电阻R的电荷量为0.25C
C.定值电阻R产生的焦耳热为0.75J
D.所用的时间t一定大于1s
【答案】CD
【解析】
由速度图象得:v=2x,金属棒所受的安培力
,代入得:FA=2x,则知FA与x是线性关系.当x=0时,安培力FA1=0;当x=1m时,安培力FA2=2N,则从起点发生s=1m位移的过程中,安培力做功为
根据动能定理得:W-μmgs+WA=
mv2,其中v=2m/s,μ=0.5,m=2kg,代入解得,拉力做的功W=15J.故A错误.通过电阻R的感应电量
.故B错误.根据能量守恒得:整个电路产生的焦耳热等于克服安培力做功,即W安=Q=1J,则电阻R上产生的热量:
,选项C正确;v-x图象的斜率
,得a=kv=2v,则知速度增大,金属棒的加速度也随之增大,v-t图象的斜率增大,金属棒做加速增大的变加速运动,在相同时间内,达到相同速度时通过的位移小于匀加速运动的位移,平均速度小于匀加速运动的平均速度,即
,则
.故D正确.故选CD
点睛:本题有两个难点:一是根据v与x的关系,由安培力公式
,得到FA与x的关系式,确定出FA与x是线性关系,即可求出安培力做功;二是根据v-x图象的斜率研究加速度的变化情况,结合v-t图象分析平均速度.
第II卷(非选择题)
评卷人
得分
三、解答题
11.如图所示,先后以速度和,匀速地把同一线圈从同一位置拉出有界匀强磁场的过程中,在先后两种情况下:
(1)线圈中的感应电流之比
(2)线圈中通过的电量之比
(3)拉力做功的功率之比.
【答案】(1)1:2
?
(2)1:1
?
(3)1:4
【解析】感应电流根据、求解;热量根据焦耳定律列式求解;在恒力作用下,矩形线圈以不同速度被匀速拉出,拉力与安培力大小相等,拉力做功等于拉力与位移的乘积,而拉力功率等于拉力与速度的乘积感应电荷量由求解.
【详解】设线圈的长为a,宽为L
(1)线圈中感应电流,可知,故感应电流之比是1:2.
(2)流过任一横截面感应电荷量,可知q与v无关,所以感应电荷量之比为1:1;
(3)由于线圈匀速运动,外力与安培力大小相等,为,外力的功率为,,所以外力的功率之比为1:4.
【点睛】要对两种情况下物理量进行比较,我们应该先把要比较的物理量表示出来再求解关键要掌握安培力的推导方法和感应电荷量的表达式.
12.如图所示,足够长的光滑平行金属导轨JK、PQ倾斜放置,两导轨间距离为L=1.0m,导轨平面与水平面间的夹角为θ=30°,磁感应强度为B=1.0T的匀强磁场垂直于导轨平面向上,导轨的J、P两端连接阻值为R=1.5Ω的电阻,金属棒ab垂直于导轨放置,质量m=0.20kg,电阻r=0.5Ω,现对棒施加平行斜面向上大小为6N的恒力F,使其由静止开始运动,经t=1.0s时达到最大速度,不计导轨电阻,g=10m/s2.求:
(1)金属棒ab的最大速度及此时ab两端的电压;
(2)金属棒由静止到速度最大时通过的位移.
【答案】(1)
10m/s,7.5V
(2)6m
【详解】
(1)设金属棒ab的最大速度为v,此时ab棒做匀速直线运动,则有:
由闭合电路欧姆定律可得:
ab棒受到的安培力为:
金属棒ab的速度最大时,合力为零,则有:
解得:
此时ab两端的电压为:
(2)设金属棒由静止到速度最大时通过的位移为s,对导体棒,由动量定理得:

联立解得:
PAGE
30
同课章节目录