2020-2021学年北师大版七年级数学下册第二章
2.2.1探索直线平行的条件(一)
同步练习题
A组(基础题)
一、填空题
1.
(1)同一平面内有三条直线,如果其中只有两条直线平行,那么它们有_____个交点.
(2)如图,已知直线a∥c,∠1=∠2.那么直线b,c的位置关系是_____,其理由是__________
2.
(1)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是_____
第2(1)题图 第2(2)题图
(2)如图,如果∠1=60°,∠C=60°,∠D=115°,那么平行的直线是_____.(用平行符号表示)
3.(1)如图,要证AD∥BC,只需∠B=_____,根据是_____.
(2)如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上,理由是_____
4.
下列说法中错误的有_____个.
①两条不相交的直线叫作平行线;
②经过直线外一点,能够画出一条直线与已知直线平行,并且只能画出一条;
③如果a∥b,b∥c,那么a∥c;
④两条不平行的射线,在同一平面内一定相交.
二、选择题
5.
如图,与∠1是同位角的是(
)
A.∠2
B.∠3
C.∠4
D.∠5
6.如图,直线l与直线a,b相交,且a∥b,∠1=50°,则∠2的度数是(
)
A.130°
B.50°
C.100°
D.120°
7.
下列命题中正确的有(
)
①相等的角是对顶角;
②若a∥b,b∥c,则a∥c;
③同位角相等;
④邻补角的平分线互相垂直.
A.1个
B.2个
C.3个
D.4个
8.如图,将木条a,b与c钉在一起,且木条a与木条c交于点O,∠1=70°,∠2=40°,要使木条a与b平行,木条a绕点O顺时针旋转的度数至少是(
)
A.10°
B.20°
C.30°
D.50°
三、解答题
9.
如图,已知直线MN分别与直线AB,CD,EF相交于点G,H,K,∠1=∠2,AB∥EF,试说明:AB∥CD.
10.(1)如图,直线AB,CD被直线GH所截,且∠AEG=∠CFG,EM,FN分别平分∠AEG和∠CFG.试说明:EM∥FN.
(2)如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?
B组(中档题)
一、填空题
11.
已知直线m及一点P,若过点P作一直线与m平行,那么这样的直线有_____条.
工人师傅想要知道砌好的墙壁的上、下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上、下边缘是否平行.当∠EGB_____∠GFD时,墙壁的上、下边缘平行,依据是_____
13.
(1)如图,已知CD⊥AD,DA⊥AB,还需要添加一个条件,才能使DF与AE平行,添加的条件是_____.
第13(1)题图
第13(2)题图
(2)已知:如图,∠ABC=130°,AB⊥MN于点F,∠a=40°.直线MN与l的位置关系是_____
二、解答题
14.
如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.
C组(综合题)
15.
(1)已知∠ADE=∠A+∠B,求证:DE∥BC.
(2)如图,已知∠B=∠D+∠E,请你判断AB与CD的位置关系,并说明理由.
参考答案
2020-2021学年北师大版七年级数学下册第二章
2.2.1探索直线平行的条件(一)
同步练习题
A组(基础题)
一、填空题
1.
(1)同一平面内有三条直线,如果其中只有两条直线平行,那么它们有2个交点.
(2)如图,已知直线a∥c,∠1=∠2.那么直线b,c的位置关系是b∥c,其理由是平行于同一条直线的两条直线互相平行.
2.
(1)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是同位角相等,两直线平行.
第2(1)题图 第2(2)题图
(2)如图,如果∠1=60°,∠C=60°,∠D=115°,那么平行的直线是AB∥CD.(用平行符号表示)
3.(1)如图,要证AD∥BC,只需∠B=∠1,根据是同位角相等,两直线平行.
(2)如图,PC∥AB,QC∥AB,则点P,C,Q在一条直线上,理由是经过直线外一点,有且只有一条直线与这条直线平行.
4.
下列说法中错误的有2个.
①两条不相交的直线叫作平行线;
②经过直线外一点,能够画出一条直线与已知直线平行,并且只能画出一条;
③如果a∥b,b∥c,那么a∥c;
④两条不平行的射线,在同一平面内一定相交.
二、选择题
5.
如图,与∠1是同位角的是(D)
A.∠2
B.∠3
C.∠4
D.∠5
6.如图,直线l与直线a,b相交,且a∥b,∠1=50°,则∠2的度数是(B)
A.130°
B.50°
C.100°
D.120°
7.
下列命题中正确的有(B)
①相等的角是对顶角;
②若a∥b,b∥c,则a∥c;
③同位角相等;
④邻补角的平分线互相垂直.
A.1个
B.2个
C.3个
D.4个
8.如图,将木条a,b与c钉在一起,且木条a与木条c交于点O,∠1=70°,∠2=40°,要使木条a与b平行,木条a绕点O顺时针旋转的度数至少是(C)
A.10°
B.20°
C.30°
D.50°
三、解答题
9.
如图,已知直线MN分别与直线AB,CD,EF相交于点G,H,K,∠1=∠2,AB∥EF,试说明:AB∥CD.
解:∵∠1=∠2,
∴CD∥EF.
∵AB∥EF,
∵AB∥CD.
10.(1)如图,直线AB,CD被直线GH所截,且∠AEG=∠CFG,EM,FN分别平分∠AEG和∠CFG.试说明:EM∥FN.
解:∵EM,FN分别平分∠AEG和∠CFG,
∴∠GEM=∠AEG,∠GFN=∠CFG.
∵∠AEG=∠CFG,
∴∠GEM=∠GFN.
∴EM∥FN.
(2)如图,CE⊥DG,垂足为C,∠BAF=50°,∠ACE=140°.CD与AB平行吗?为什么?
解:AB∥CD.理由:
∵CE⊥DG,
∴∠ECG=90°.
∵∠ACE=140°,
∴∠ACG=50°.
∵∠BAF=50°,
∴∠BAF=∠ACG.
∴AB∥DC.
B组(中档题)
一、填空题
11.
已知直线m及一点P,若过点P作一直线与m平行,那么这样的直线有0或1条.
12.
工人师傅想要知道砌好的墙壁的上、下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上、下边缘是否平行.当∠EGB=∠GFD时,墙壁的上、下边缘平行,依据是同位角相等,两直线平行.
13.
(1)如图,已知CD⊥AD,DA⊥AB,还需要添加一个条件,才能使DF与AE平行,添加的条件是∠CDF=∠BAE.
第13(1)题图
第13(2)题图
(2)已知:如图,∠ABC=130°,AB⊥MN于点F,∠a=40°.直线MN与l的位置关系是平行.
二、解答题
14.
如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.
解:BE∥DF.理由如下:
∵∠A=∠C=90°,
∴∠ABC+∠ADC=180°.
∵BE平分∠ABC,DF平分∠ADC,
∴∠1=∠2=∠ABC,∠3=∠4=∠ADC.
∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°.
又∵∠1+∠AEB=90°,
∴∠3=∠AEB.
∴BE∥DF.
C组(综合题)
15.
(1)已知∠ADE=∠A+∠B,求证:DE∥BC.
证明:方法1:延长AD交BC于点F,如图1.
∵∠AFC是△ABF的外角,
∴∠AFC=∠A+∠B.
又∵∠ADE=∠A+∠B,
∴∠AFC=∠ADE.
∴DE∥BC.
图1 图2
方法2:如图2,反向延长DE,交AB于点F.
∵∠ADE是△AFD的外角,
∴∠ADE=∠A+∠1.
又∵∠ADE=∠A+∠B,
∴∠1=∠B.
∴DE∥BC.
(2)如图,已知∠B=∠D+∠E,请你判断AB与CD的位置关系,并说明理由.
解:AB∥CD.理由如下:
∵∠COE=∠D
+∠E,∠B=∠D+∠E,
∴∠COE=∠B.
∴AB∥CD.