第3章 图形的平移与旋转训练卷(Word版 含解析)

文档属性

名称 第3章 图形的平移与旋转训练卷(Word版 含解析)
格式 doc
文件大小 347.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2021-04-01 12:05:46

图片预览

文档简介

第3章训练题
一、选择题
1.下列垃圾分类标识中,是中心对称图形的是(  )
A. B.
C. D.
2.如图,将△ABC绕点B按逆时针方向旋转40°到△DBE(其中点D与点A对应,点E与点C对应),连接AD,若AD∥BC,则∠ABE的度数为(  )
A.25° B.30° C.35° D.40°
3.如图,在△ABC中,以C为中心,将△ABC顺时针旋转34°得到△DEC,边ED,AC相交于点F,若∠A=30°,则∠EFC的度数为(  )
A.60° B.64° C.66° D.68°
4.如图,四边形ABCD中,∠DAB=30°,连接AC,将△ABC绕点B逆时针旋转60°,点C的对应点与点D重合,得到△EBD,若AB=5,AD=4,则点AC的长度为(  )
A.5 B.6 C. D.
5.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列四个结论:
①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC;
其中一定正确的是(  )
A.①② B.②③ C.③④ D.②③④
6.下列图形中,既是轴对称图形又是中心对称图形的是(  )
A. B. C. D.
7.点P(2,﹣1)关于原点对称的点P′的坐标是(  )
A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)
8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD.下列结论一定正确的是(  )
A.∠ABD=∠E B.∠CBE=∠C
C.AD=DE D.△ADB是等边三角形
9.在 Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论①AE+BF=AB,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是(  )
A.①②④ B.①②③ C.①③④ D.①②③④
10.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为(  )
A.70° B.84° C.80° D.86°
二、填空题
11.若点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,则m+n的值是   .
12.如图,在△ABC中,AB=4,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为   .
13.如图,在△ABC中,AB=4,BC=7,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为   .
14.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为   °.
15.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是   .
16.如图,在△ABC中,AB=AC,∠B=70°,把△ABC绕点C顺时针旋转得到△EDC,若点B恰好落在AB边上D处,则∠1=   °.
17.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,若∠ACB=30°,则∠DAC的度数是   .
18.如图,△ODC是由△OAB绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且∠AOC=105°,则∠C的度数是   .
19.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A',则点A'的坐标是   .
20.如图,第一象限内有两点P(m﹣3,n),Q(m,n﹣2),将线段PQ平移使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是   .
三、解答题
21.△ABC在平面直角坐标系xOy中的位置如图所示,点A(﹣2,3),点B(﹣4,0),点C(﹣1,1)为△ABC的顶点.
(1)作△ABC关于原点O成中心对称的△A1B1C1.
(2)将△A1B1C1向上平移5个单位,作出平移后的A2B2C2.
(3)在x轴上求作一点P,使PA+PA2的值最小,并求出点P的坐标.
22.如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上.
(1)将△ABC向右平移6个单位长度得到△A1B1C1,请画出△A1B1C1;
(2)画出△A1B1C1关于点O的中心对称图形△A2B2C2;
(3)若将△ABC绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.
23.将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图1的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O.
(1)求证:△BCE≌△B1CF;
(2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.
24.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.
求:①旋转角的度数   ;
②线段OD的长   ;
③求∠BDC的度数.
(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.
25.如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.
(1)请求出旋转角的度数;
(2)请判断AE与BD的位置关系,并说明理由;
(3)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.
26.如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.
(1)求证:AD=DE;
(2)求∠DCE的度数;
(3)若BD=1,求AD,CD的长.
参考答案
1.解:A、不是中心对称图形,故此选项不合题意;
B、是中心对称图形,故此选项符合题意;
C、不是中心对称图形,故此选项不合题意;
D、不是中心对称图形,故此选项不合题意;
故选:B.
2.解:∵将△ABC绕点B按逆时针方向旋转40°,
∴AB=DB,∠ABD=∠CBE=40°,
∴∠BAD=∠BDA=70°,
∵AD∥BC,
∴∠DAB=∠ABC=70°,
∴∠ABE=∠ABC﹣∠EBC=30°,
故选:B.
3.解:由旋转的性质得:∠D=∠A=30°,∠DCF=34°,
∴∠EFC=∠A+∠DCF=30°+34°=64°;
故选:B.
4.解:∵△EBD是由△ABC旋转得到,
∴BA=BE,∠ABE=60°,AC=DE,
∴△ABE是等边三角形,
∴∠EAB=60°,
∵∠BAD=30°,
∴∠EAD=90°,
∵AE=AB=5,AD=4,
∴DE===,
∴AC=DE=,
故选:D.
5.解:∵将△ABC绕点C顺时针旋转得到△DEC,
∴AC=CD,BC=CE,AB=DE,故①错误,③正确;
∴∠ACD=∠BCE,
∴∠A=∠ADC=,∠CBE=,
∴∠A=∠EBC,故④正确;
∵∠A+∠ABC不一定等于90°,
∴∠ABC+∠CBE不一定等于90°,故②错误.
故选:C.
6.解:A、不是轴对称图形,是中心对称图形,故此选项错误;
B、不是轴对称图形,是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,也是中心对称图形,故此选项正确.
故选:D.
7.解:点P(2,﹣1)关于原点对称的点P′的坐标是(﹣2,1),
故选:A.
8.解:选项D正确.
理由:∵△DBE是由△ABC旋转所得,
∴BA=BD,
∵∠ABD=60°,
∴△ABD是等边三角形,
故选:D.
9.解:连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,
∴AD=CD=BD=AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.
∴∠ADE+∠EDC=90°,
∵∠EDC+∠FDC=∠GDH=90°,
∴∠ADE=CDF.
在△ADE和△CDF中,,
∴△ADE≌△CDF(ASA),
∴AE=CF,DE=DF,S△ADE=S△CDF.
∵AC=BC,
∴AC﹣AE=BC﹣CF,
∴CE=BF.
∵AC=AE+CE,
∴AC=AE+BF.
∵AC2+BC2=AB2,
∴AC=AB,
∴AE+BF=AB.
∵DE=DF,∠GDH=90°,
∴△DEF始终为等腰直角三角形.
∵CE2+CF2=EF2,
∴AE2+BF2=EF2.
∵S四边形CEDF=S△EDC+S△EDF,
∴S四边形CEDF=S△EDC+S△ADE=S△ABC.
∴正确的有①②③④.
故选D.
10.解:根据旋转的性质可知∠BAB1=100°,且AB=AB1,∠B=∠AB1C1.
∵点B1在线段BC的延长线上,∴∠BB1A=∠B=40°.
∴∠AB1C1=40°.
∴∠BB1C1=∠BB1A+∠AB1C1=40°+40°=80°.
故选:C.
11.解:∵点P(m﹣1,5)与点Q(3,2﹣n)关于原点成中心对称,
∴m﹣1=﹣3,2﹣n=﹣5,
解得:m=﹣2,n=7,
故m+n=5.
故答案为:5.
12.解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,
∴AC=AC1=3,∠CAC1=60°,
∴∠BAC1=90°,
∴BC1===5,
故答案为:5.
13.解:由旋转的性质可得AB=AD=4,
∵∠B=60°,
∴△ABD为等边三角形,
∴BD=AD=4,
∴CD=BC﹣BD=7﹣4=3,
故答案为:3.
14.解:∵AB∥CC',
∴∠ABC+∠C′CB=180°,
而∠B=90°,
∴∠C′CB=90°,
∴∠ACC′=90°﹣∠ACB=90°﹣50°=40°,
∵Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,
∴AC=AC′,∠C′AC等于旋转角,
∴∠AC′C=∠ACC′=40°,
∴∠C′AC=180°﹣40°﹣40°=100°,
即旋转角为100°.
故答案为100.
15.解:当顺时针旋转时,
∵将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,
∴旋转角为∠CAC',∠BAC+∠CAC'=180°,
∴∠CAC'=150°,
当逆时针旋转时,旋转角为210°,
故答案为:150°或210°.
16.解:∵AB=AC,∠B=70°,
∴∠ACB=∠B=70°,
∴∠A=180°﹣70°﹣70°=40°,
∵△ABC绕点C顺时针旋转得到△EDC,
∴∠CDE=∠B=70°,BC=CD,
∴∠B=∠BDC=70°,
∴∠ADE=180°﹣70°﹣70°=40°,
∴∠1=180°﹣40°﹣40°=100°,
故答案为:100.
17.解:由旋转的性质可知
△ABC≌△CED
∴AC=CD,∠ECD=∠ACB=30°
∴∠DAC=∠ADC=75°
故答案为75°
18.解:∵∠AOC的度数为105°,
由旋转可得∠AOD=∠BOC=40°,
∴∠AOB=105°﹣40°=65°,
∵△AOD中,AO=DO,
∴∠A=(180°﹣40°)=70°,
∴△ABO中,∠B=180°﹣70°﹣65°=45°,
由旋转可得,∠C=∠B=45°,故答案为:45°.
19.解:将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A'的坐标为(1﹣2,﹣2+3),即(﹣1,1),
故答案为:(﹣1,1).
20.解:设平移后点P、Q的对应点分别是P′、Q′.
分两种情况:
①P′在y轴上,Q′在x轴上,
则P′横坐标为0,Q′纵坐标为0,
∵0﹣(n﹣2)=﹣n+2,
∴n﹣n+2=2,
∴点P平移后的对应点的坐标是(0,2);
②P′在x轴上,Q′在y轴上,
则P′纵坐标为0,Q′横坐标为0,
∵0﹣m=﹣m,
∴m﹣3﹣m=﹣3,
∴点P平移后的对应点的坐标是(﹣3,0);
综上可知,点P平移后的对应点的坐标是(0,2)或(﹣3,0).
故答案为(0,2)或(﹣3,0).
21.解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作;
(3)如图,作A点关于x轴的对称点A′,连接A′A2交x轴于点P,则P点为所作;
设直线A′A2的解析式为y=kx+b,
把A′(﹣2,﹣3),A2(2,2)代入得,解得,
∴直线A′A2的解析式为y=x﹣,
当y=0时,x﹣=0,解得x=,
∴P点坐标为(,0).
22.解:(1)如图,△A1B1C1即为所求;
(2)如图,△A2B2C2即为所求;
(3)根据图形可知:
旋转中心的坐标为:(﹣3,0).
23.(1)证明:由题意得,BC=B1C,∠B=∠B1=60°,
又∵∠BCE+∠ECF=90°,
∠B1CF+∠ECF=90°,
∴∠BCE=∠B1CF,
在△BCE和△B1CF中,

∴△BCE≌△B1CF(ASA);
(2)当旋转角等于30°时,AB与A1B1垂直.理由如下:
证明:∵∠ECF=30°,
∴∠BCE=60°,
∴△BCE是等边三角形,
∴∠BEC=60°,得∠A1EO=60°,
又∵∠A1=30°,
∴∠A1EO=60°,
即AB与A1B1垂直.
24.解:(1)①∵△ABC为等边三角形,
∴BA=BC,∠ABC=60°,
∵△BAO绕点B顺时针旋转后得到△BCD,
∴∠OBD=∠ABC=60°,
∴旋转角的度数为60°;
②∵△BAO绕点B顺时针旋转后得到△BCD,
∴BO=BD,
而∠OBD=60°,
∴△OBD为等边三角形;
∴OD=OB=4;
③∵△BOD为等边三角形,
∴∠BDO=60°,
∵△BAO绕点B顺时针旋转后得到△BCD,
∴CD=AO=3,
在△OCD中,CD=3,OD=4,OC=5,
∵32+42=52,
∴CD2+OD2=OC2,
∴△OCD为直角三角形,∠ODC=90°,
∴∠BDC=∠BDO+∠ODC=60°+90°=150°;
(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:
∵△BAO绕点B顺时针旋转后得到△BCD,
∴∠OBD=∠ABC=90°,BO=BD,CD=AO,
∴△OBD为等腰直角三角形,
∴OD=OB,
∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,
∴OA2+2OB2=OC2,
∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.
25.解:(1)∵将△BCD绕点C顺时针旋转得到△ACE
∴△BCD≌△ACE
∴AC=BC,
又∵∠ABC=45°,
∴∠ABC=∠BAC=45°
∴∠ACB=90°
故旋转角的度数为90°
(2)AE⊥BD.
理由如下:
在Rt△BCM中,∠BCM=90°
∴∠MBC+∠BMC=90°
∵△BCD≌△ACE
∴∠DBC=∠EAC
即∠MBC=∠NAM
又∵∠BMC=∠AMN
∴∠AMN+∠CAE=90°
∴∠AND=90°
∴AE⊥BD
(3)如图,连接DE,
由旋转图形的性质可知
CD=CE,BD=AE,旋转角∠DCE=90°
∴∠EDC=∠CED=45°
∵CD=3,
∴CE=3
在Rt△DCE中,∠DCE=90°
∴DE===3
∵∠ADC=45°
∴∠ADE=∠ADC+∠EDC=90°
在Rt△ADE中,∠ADE=90°
∴EA===
∴BD=
26.(1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE
∴△ABD≌△ACE,∠BAC=∠DAE,
∴AD=AE,BD=CE,∠AEC=∠ADB=120°,
∵△ABC为等边三角形
∴∠BAC=60°
∴∠DAE=60°
∴△ADE为等边三角形,
∴AD=DE,
(2)∠ADC=90°,∠AEC=120°,∠DAE=60°
∴∠DCE=360°﹣∠ADC﹣∠AEC﹣∠DAE=90°,
(3)∵△ADE为等边三角形
∴∠ADE=60°
∴∠CDE=∠ADC﹣∠ADE=30°
又∵∠DCE=90°
∴DE=2CE=2BD=2,
∴AD=DE=2
在Rt△DCE中,