第7章 一次方程组 单元测试卷(含解析)

文档属性

名称 第7章 一次方程组 单元测试卷(含解析)
格式 docx
文件大小 269.8KB
资源类型 试卷
版本资源 华东师大版
科目 数学
更新时间 2021-04-02 08:44:57

图片预览

文档简介

初中数学华师大版七年级下学期 第7章测试卷
一、单选题
1.下列方程组中是二元一次方程组的是(? )
A.????????????????????????B.????????????????????????C.????????????????????????D.?
2.已知方程组 和方程组 有相同的解,则 的值是(?? )
A.?1?????????????????????????????????????????B.??????????????????????????????????????????C.?2?????????????????????????????????????????D.?
3.已知方程组 ,则x+y+z的值为(??? )
A.?6?????????????????????????????????????????B.?-6?????????????????????????????????????????C.?5?????????????????????????????????????????D.?-5
4.利用两块长方体木块测量两张桌子的高度.首先按图 方式放置,再交换两木块的位置,按图 方式放置.测量的数据如图,则桌子高度是(? )
A.???????????????????????????????????B.???????????????????????????????????C.???????????????????????????????????D.?
5.甲、乙二人同时同地出发,都以不变的速度在300米环形跑道上奔跑.若反向而行,每隔 相遇一次,若同向而行,则每隔 相遇一次,已知甲比乙跑得快,设甲每秒跑 米,乙每秒跑 米,则可列方程为(? )
A.????????????B.????????????C.????????????D.?
6.某市举办中学生足球赛,按比赛规则,每场比赛都要分出胜负,胜1场得3分,负一场扣1分,菁英中学队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为(??? )
A.?????????????????????B.?????????????????????C.?????????????????????D.?
二、填空题
7.有A、B、C三种商品,如果购5件A、2件B、3件C共需513元,购3件A、6件B、5件C共需375件,那么购A、B、C各一件共需________元.
8.若x+y+z=15,-3x-y+z=-25,x、y、z皆为非负数,记整式5x+4y+z的最大值为a,最小值为b,则a﹣b =________.
三、计算题
9.解方程
(1)
(2)
10.解下列方程组.
(1)??????????????
(2)
四、解答题
11.关于 的二元一次方程组 的解也是二元一次方程 的解,求 的值.
12.关于x、y的二元一次方程组 与 的解相同,求a、b的值.
13.甲、乙两人同时解方程组 时,甲看错了方程①中的a,解得 ,乙看错了②中的b,解得 ,求原方程组的正确解.
14.对于实数 、 ,定义关于“ ”的一种运算: ,例如 .
(1)求 的值;
(2)若 , ,求 的值.
五、综合题
15.某景点的门票价格如下表:
购票人数
1~50
51~100
100以上
每人门票价
20
16
10
某校八年级(一)、(二)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1828元,如果两班联合起来作为一个团体购票,则只需花费1020元.
(1)两个班各有多少名学生?
(2)团体购票与单独购票相比较,两个班各节约了多少元?
答案解析部分
一、单选题
1.【答案】 D
解:A. ,不是二元一次方程组;
B. ,不是二元一次方程组;
C. ,不是二元一次方程组;
D. ,是二元一次方程组;
故答案为:D.
2.【答案】 A
解:解方程组 ,
得 ,
代入x+y+m=0得,m=1,
故答案为:A.
3.【答案】 C
解:∵ ,
①+②+③,得
x+y+z=5,
故答案为:C.
4.【答案】 B
解:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,
由第一个图形可知桌子的高度为:h-y+x=80,
由第二个图形可知桌子的高度为:h-x+y=70,
两个方程相加得:(h-y+x)+(h-x+y)=150,
解得:h=75.
故答案为:B.
5.【答案】 C
解:设甲每秒跑x米,乙每秒跑y米,
由题意得: ,
故答案为:C.
6.【答案】 C
解: 该队胜的场数为x场,负的场数为y场,
根据题意得:.
故答案为:C.
二、填空题
7.【答案】 111
解:设购进A商品 x件,B商品y件,C商品z件,
则 ,可得 ,
解得 ,
故答案为:111.
8.【答案】
解: ,
①-②得4x+2y=40,即2x+y=20,
y=20-2x,
①+②得-2x+2z=-10,即x-z=5,
z=x-5,
将y,z代入5x+4y+z得5x+4(20-2x)+(x-5),
整理得:-2x+75,
∵x、y、z皆为非负数,
∴ ,
解得:5≤x≤10,
∴-20≤-2x≤-10
55≤-2x+75≤65,
∴整式5x+4y+z的最大值为65,最小值为55,
即a=65,b=55,
∴a-b=10,
故答案为:10.
三、计算题
9.【答案】 (1),
得: ,
得: ,
得: ,
把 代入 ,解得: ,
所以原方程组的解是 ;
(2)先整理得:
得: ,
解得:
将 代入 得:
所以原方程组的解是 .
10.【答案】 (1)解:
①×3得? ,
②×2得? ,
③-④得 ,
解得 ,
把 代入①得 ,
解得 ,
∴方程组的解是 ;
(2)解:
把①代入②并化简得 ,
③+④得 ,
④-③得 ,
把 , 代入①得 ,
∴方程组的解是 .
四、解答题
11.【答案】 解: ,
① ②,得 ,即 ,
则解方程组 ,解得 ,
把它代入①,得 ,解得 .
12.【答案】 解 ? 得 .
由x,y的二元一次方程组 与 的解相同,得

①+②,得﹣2a=6. ?解得a=﹣3.
把a=﹣3代入①,得3﹣2b=2.解得b=
13.【答案】 解:把 代入方程②得: ,
解得: ,
把 代入方程①得: ,
解得: ,
∴原方程组为
由①得: ③,
把③代入②得: ,
把 代入③得: ,
∴原方程组的正确解为: .
14.【答案】 (1)解:根据题中的新定义得:原式= ;
故答案为:5.
(2)解:根据题中的新定义化简得: ,
两式相加得: ,则 .
故答案为:
五、综合题
15.【答案】 (1)解: ?∵1020 ÷16=不是整数,
∴(一)(二)两班的人数之和超过100人,
设(一)班人数为x名学生,(二)班人数为y名学生,
依题意可得,
解得,
答:(一)班人数有49名学生,(二)班人数有53名学生.
(2)解: (一)班节约的钱数为(20-10)×49=490元
(二)班节约的钱数为(16-10)×53=318元
答: 团体购票与单独购票相比较,(一)班节约了490元,(二)班节约了318元.