中小学教育资源及组卷应用平台
18.1.2 平行四边形的判定(第二课时 三角形中位线)
同步练习
一、单选题(共10小题)
1.(2020·辽宁朝阳市·八年级期末)如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点,若∠MPN=130°,则∠NMP的度数为( )
A.10° B.15° C.25° D.40°
2.(2020·辽宁辽阳市·八年级期末)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD,下列结论错误的是( )
A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB
3.(2020·北京铁期中)如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).
A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
C.线段EF的长不变 D.线段EF的长不能确定
4.(2020·山东临沂市期末)如图,在中,分别是的中点,点在延长线上,添加一个条件使四边形为平行四边形,则这个条件是( )
A. B. C. D.
5.(2020·江苏苏州市·八年级期中)如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为( )
A.32 B.16 C.8 D.4
6.(2020·山东济南市·八年级期末)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )
A.7 B.8 C.9 D.10
7.(2020·江西南昌市·八年级期中)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为( )
A.24 B.18 C.12 D.9
8.(2020·深圳市期中)如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P.若BC=10,则PQ的长为( )
A. B. C.3 D.4
9.(2020·自贡市期中)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于( )
A.3cm B.4cm C.2.5cm D.2cm
10.(2020·山东济南市期末)如图,已知点E、F、G.H分别是菱形ABCD各边的中点,则四边形EFGH是( )
A.正方形 B.矩形 C.菱形 D.平行四边形
二、填空题(共5小题)
11.(2020·江苏扬州市期中)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.
12.(2020·河南信阳市·八年级期中)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.
13.(2020·甘肃陇南市·八年级期末)如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=_____.
14.(2020·江苏南京市·八年级期末)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.
15.(2020·内蒙古巴彦淖尔市·八年级期中)如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=___厘米.
三、解答题(共2小题)
16.(2020·河南信阳市·八年级期末)已知:如图,点A.F,E.C在同一直线上,AB∥DC,AB=CD,∠B=∠D,
(1)求证:△ABE≌△CDF;
(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.
17.(2020·广东汕尾市·八年级期末)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
答案
一、单选题(共10小题)
1.C.2.D 3.C 4.B 5.C 6.B 7.A 8.C 9.A 10.B
二、填空题(共5小题)
11.5
12.1
13.2
14.18
15.3
三、解答题(共2小题)
16.【详解】
解:(1)证明:∵AB∥DC,
∴∠A=∠C,
在△ABE与△CDF中
,
∴△ABE≌△CDF(ASA);
(2)∵点E,G分别为线段FC,FD的中点,
∴ED=CD,
∵EG=5,
∴CD=10,
∵△ABE≌△CDF,
∴AB=CD=10.
17.【详解】
(1)在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,且MN=AD,在Rt△ABC中,∵M是AC的中点,∴BM=AC,又∵AC=AD,∴MN=BM;
(2)∵∠BAD=60°且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴,而由(1)知,MN=BM=AC=×2=1,∴BN=.
考点:三角形的中位线定理,勾股定理
_21?????????è?????(www.21cnjy.com)_