2020--2021学年苏科版八年级数学下册 第9章 《中心对称图形——平行四边形》基础题型提高练习(一)(word版无答案)

文档属性

名称 2020--2021学年苏科版八年级数学下册 第9章 《中心对称图形——平行四边形》基础题型提高练习(一)(word版无答案)
格式 zip
文件大小 103.7KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2021-04-04 14:50:30

图片预览

文档简介

苏科版八年级下册
第9章
《中心对称图形——平行四边形》
基础题型提高练习(一)
1.如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2﹣CF2取最大值时,求tan∠DCF的值.
2.如图,已知平行四边形ABCD,过A点作AM⊥BC于M,交BD于E,过C点作CN⊥AD于N,交BD于F,连接AF、CE.
(1)求证:四边形AECF为平行四边形;
(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.
3.已知直角三角形ABC中,∠B=90°,AB=8,BC=6,BM为中线,△BMN为等腰三角形(点N在三角形AB或AC边上,且不与顶点重合),求S△BMN.
4.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.
(1)求证:四边形ADCE是平行四边形;
(2)若∠B=30°,∠CAB=45°,AC=,CD=BD,求AD的长.
5.如图,正方形ABCD,点E在边BC上,△AEF为等腰直角三角形.
(1)如图1,当∠AEF=90°,求证:∠DCF=45°;
(2)如图2,当∠EAF=90°,取EF的中点P,连接PD,求证:EC=PD.
6.如图,在菱形ABCD中,AE⊥BC于点E
(1)若∠BAE=30°,AE=3,求菱形ABCD的周长.
(2)作AF⊥CD于点F,连接EF,BD,求证:EF∥BD.
(3)设AE与对角线BD相交于点G,若CE=4,BE=8,四边形CDGE和△AGD的面积分别是S1和S2,求S1﹣S2的值.
7.问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),可得∠AP′B= 
 °,所以∠BPC=∠AP′B= 
 °,还可证得△ABP是直角三角形,进而求出等边三角形ABC的边长为 
 ,问题得到解决.
(1)根据李明同学的思路填空:∠AP′B= 
 °,∠BPC=∠AP′B= 
 °,等边三角形ABC的边长为 
 .
(2)探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PA=,PB=,PC=1.求∠BPC的度数和正方形ABCD的边长.
8.如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.
(1)如图2,当BP=BA时,∠EBF= 
 °,猜想∠QFC= 
 °;
(2)如图1,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明;
(3)已知线段AB=2,设BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.
9.如图,已知正方形ABCD,P是对角线AC上任意一点,过点P作PM⊥AD于点M,PN⊥AB于点N.
(1)求证:四边形PMAN是正方形;
(2)若E是AM上一点,且∠EPA=15°,直接写出∠MEP的度数.
10.如图,在菱形ABCD中,对角线AC,BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.
(1)证明:四边形ACDE是平行四边形;
(2)若AC=4,BD=3,求△ADE的周长.
11.如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.
(1)求证:△BAE≌△BCF;
(2)若∠ABC=40°,则当∠EBA= 
 °时,四边形BFDE是正方形.
12.如图,已知菱形ABCD的边长为2,∠DAB=60°,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.连接BD.
(1)图中有几对三角形全等?试选取一对全等的三角形给予证明;
(2)判断△BEF的形状,并说明理由.
(3)当△BEF的面积取得最小值时,试判断此时EF与BD的位置关系.
13.如图,在四边形ABCD中,AD∥BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.
(1)求证:四边形ABCD是矩形;
(2)若AB=2,求△OEC的面积.
14.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.
(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;
(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;
(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.
15.如图,在?ABCD中,E为BC边上一点,且AB=AE.
(1)求证:△ABC≌△EAD;
(2)若∠B=65°,∠EAC=25°,求∠AED的度数.