首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标A版
选修2-2
本册综合
数学选修2-2同步考练全套
文档属性
名称
数学选修2-2同步考练全套
格式
zip
文件大小
1.1MB
资源类型
教案
版本资源
人教新课标A版
科目
数学
更新时间
2012-02-12 15:44:18
点击下载
文档简介
选修2-2 1.2.2 第1课时 基本初等函数的导数公式及导数运算法则
一、选择题
1.曲线y=x3-2在点处切线的倾斜角为( )
A.30° B.45°
C.135° D.60°
[答案] B
[解析] y′|x=-1=1,∴倾斜角为45°.
2.设f(x)=-,则f′(1)等于( )
A.- B.
C.- D.
[答案] B
3.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为( )
A.4x-y-3=0 B.x+4y-5=0
C.4x-y+3=0 D.x+4y+3=0
[答案] A
[解析] ∵直线l的斜率为4,而y′=4x3,由y′=4得x=1而x=1时,y=x4=1,故直线l的方程为:y-1=4(x-1)即4x-y-3=0.
4.已知f(x)=ax3+9x2+6x-7,若f′(-1)=4,则a的值等于( )
A. B.
C. D.
[答案] B
[解析] ∵f′(x)=3ax2+18x+6,
∴由f′(-1)=4得,3a-18+6=4,即a=.
∴选B.
5.已知物体的运动方程是s=t4-4t3+16t2(t表示时间,s表示位移),则瞬时速度为0的时刻是( )
A.0秒、2秒或4秒 B.0秒、2秒或16秒
C.2秒、8秒或16秒 D.0秒、4秒或8秒
[答案] D
[解析] 显然瞬时速度v=s′=t3-12t2+32t=t(t2-12t+32),令v=0可得t=0,4,8.故选D.
6.(2010·新课标全国卷文,4)曲线y=x3-2x+1在点(1,0)处的切线方程为( )
A.y=x-1 B.y=-x-1
C.y=2x-2 D.y=-2x-2
[答案] A
[解析] 本题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.
由题可知,点(1,0)在曲线y=x3-2x+1上,求导可得y′=3x2-2,所以在点(1,0)处的切线的斜率k=1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y=x3-2x+1的切线方程为y=x-1,故选A.
7.若函数f(x)=exsinx,则此函数图象在点(4,f(4))处的切线的倾斜角为( )
A. B.0
C.钝角 D.锐角
[答案] C
[解析] y′|x=4=(exsinx+excosx)|x=4=e4(sin4+cos4)=e4sin(4+)<0,故倾斜角为钝角,选C.
8.曲线y=xsinx在点处的切线与x轴、直线x=π所围成的三角形的面积为
( )
A. B.π2
C.2π2 D.(2+π)2
[答案] A
[解析] 曲线y=xsinx在点处的切线方程为y=-x,所围成的三角形的面积为.
9.设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2011(x)等于( )
A.sinx B.-sinx
C.cosx D.-cosx
[答案] D
[解析] f0(x)=sinx,
f1(x)=f0′(x)=(sinx)′=cosx,
f2(x)=f1′(x)=(cosx)′=-sinx,
f3(x)=f2′(x)=(-sinx)′=-cosx,
f4(x)=f3′(x)=(-cosx)′=sinx,
∴4为最小正周期,∴f2011(x)=f3(x)=-cosx.故选D.
10.f(x)与g(x)是定义在R上的两个可导函数,若f(x)、g(x)满足f′(x)=g′(x),则f(x)与g(x)满足( )
A.f(x)=g(x) B.f(x)-g(x)为常数
C.f(x)=g(x)=0 D.f(x)+g(x)为常数
[答案] B
[解析] 令F(x)=f(x)-g(x),则F′(x)=f′(x)-g′(x)=0,∴F(x)为常数.
二、填空题
11.设f(x)=ax2-bsinx,且f′(0)=1,f′=,则a=________,b=________.
[答案] 0 -1
[解析] f′(x)=2ax-bcosx,由条件知
,∴.
12.设f(x)=x3-3x2-9x+1,则不等式f′(x)<0的解集为________.
[答案] (-1,3)
[解析] f′(x)=3x2-6x-9,由f′(x)<0得3x2-6x-9<0,∴x2-2x-3<0,∴-1<x<3.
13.曲线y=cosx在点P处的切线的斜率为______.
[答案] -
[解析] ∵y′=(cosx)′=-sinx,
∴切线斜率k=y′|x==-sin=-.
14.已知函数f(x)=ax+bex图象上在点P(-1,2)处的切线与直线y=-3x平行,则函数f(x)的解析式是____________.
[答案] f(x)=-x-ex+1
[解析] 由题意可知,f′(x)|x=-1=-3,
∴a+be-1=-3,又f(-1)=2,
∴-a+be-1=2,解之得a=-,b=-e,
故f(x)=-x-ex+1.
三、解答题
15.求下列函数的导数:
(1)y=x(x2++);(2)y=(+1)(-1);
(3)y=sin4+cos4;(4)y=+ .
[解析] (1)∵y=x=x3+1+,
∴y′=3x2-;
(3)∵y=sin4+cos4
=2-2sin2cos2
=1-sin2=1-·=+cosx,
∴y′=-sinx;
(4)∵y=+=+
==-2,
∴y′=′==.
16.已知两条曲线y=sinx、y=cosx,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.
[解析] 由于y=sinx、y=cosx,设两条曲线的一个公共点为P(x0,y0),
∴两条曲线在P(x0,y0)处的斜率分别为
若使两条切线互相垂直,必须cosx0·(-sinx0)=-1,
即sinx0·cosx0=1,也就是sin2x0=2,这是不可能的,
∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.
17.已知曲线C1:y=x2与C2:y=-(x-2)2.直线l与C1、C2都相切,求直线l的方程.
[解析] 设l与C1相切于点P(x1,x),与C2相切于点Q(x2,-(x2-2)2).
对于C1:y′=2x,则与C1相切于点P的切线方程为y-x=2x1(x-x1),即y=2x1x-x.①
对于C2:y′=-2(x-2),与C2相切于点Q的切线方程为y+(x2-2)2=-2(x2-2)(x-x2),
即y=-2(x2-2)x+x-4. ②
∵两切线重合,∴2x1=-2(x2-2)且-x=x-4,
解得x1=0,x2=2或x1=2,x2=0.
∴直线l的方程为y=0或y=4x-4.
18.求满足下列条件的函数f(x):
(1)f(x)是三次函数,且f(0)=3,f′(0)=0,f′(1)=-3,f′(2)=0;
(2)f′(x)是一次函数,x2f′(x)-(2x-1)f(x)=1.
[解析] (1)设f(x)=ax3+bx2+cx+d(a≠0)
则f′(x)=3ax2+2bx+c
由f(0)=3,可知d=3,由f′(0)=0可知c=0,
由f′(1)=-3,f′(2)=0
可建立方程组,
解得,
所以f(x)=x3-3x2+3.
(2)由f′(x)是一次函数可知f(x)是二次函数,
则可设f(x)=ax2+bx+c(a≠0)
f′(x)=2ax+b,
把f(x)和f′(x)代入方程,得
x2(2ax+b)-(2x-1)(ax2+bx+c)=1
整理得(a-b)x2+(b-2c)x+c=1
若想对任意x方程都成立,则需
解得,
所以f(x)=2x2+2x+1.选修2-2 1.5.3 定积分的概念
一、选择题
1.定积分(-3)dx等于( )
A.-6 B.6
C.-3 D.3
[答案] A
[解析] 由积分的几何意义可知(-3)dx表示由x=1,x=3,y=0及y=-3所围成的矩形面积的相反数,故(-3)dx=-6.
2.定积分f(x)dx的大小( )
A.与f(x)和积分区间[a,b]有关,与ξi的取法无关
B.与f(x)有关,与区间[a,b]以及ξi的取法无关
C.与f(x)以及ξi的取法有关,与区间[a,b]无关
D.与f(x)、区间[a,b]和ξi的取法都有关
[答案] A
[解析] 由定积分定义及求曲边梯形面积的四个步骤知A正确.
3.下列说法成立的个数是( )
①f(x)dx=(ξi)
②f(x)dx等于当n趋近于+∞时,f(ξi)·无限趋近的值
③f(x)dx等于当n无限趋近于+∞时,(ξi)无限趋近的常数
④f(x)dx可以是一个函数式子
A.1 B.2
C.3 D.4
[答案] A
[解析] 由f(x)dx的定义及求法知仅③正确,其余不正确.故应选A.
4.已知f(x)dx=56,则( )
A.f(x)dx=28 B.f(x)dx=28
C.2f(x)dx=56 D.f(x)dx+f(x)dx=56
[答案] D
[解析] 由y=f(x),x=1,x=3及y=0围成的曲边梯形可分拆成两个:由y=f(x),x=1,x=2及y=0围成的曲边梯形知由y=f(x),x=2,x=3及y=0围成的曲边梯形.
∴f(x)dx=f(x)dx+f(x)dx
即f(x)dx+f(x)dx=56.
故应选D.
5.已知f(x)dx=6,则6f(x)dx等于( )
A.6 B.6(b-a)
C.36 D.不确定
[答案] C
[解析] ∵f(x)dx=6,
∴在6f(x)dx中曲边梯形上、下底长变为原来的6倍,由梯形面积公式,知6f(x)dx=6f(x)dx=36.故应选C.
6.设f(x)=则-1f(x)dx的值是( )
[答案] D
[解析] 由定积分性质(3)求f(x)在区间[-1,1]上的定积分,可以通过求f(x)在区间[-1,0]与[0,1]上的定积分来实现,显然D正确,故应选D.
7.下列命题不正确的是( )
A.若f(x)是连续的奇函数,则
B.若f(x)是连续的偶函数,则
C.若f(x)在[a,b]上连续且恒正,则f(x)dx>0
D.若f(x)在[a,b)上连续且f(x)dx>0,则f(x)在[a,b)上恒正
[答案] D
[解析] 本题考查定积分的几何意义,对A:因为f(x)是奇函数,所以图象关于原点对称,所以x轴上方的面积和x轴下方的面积相等,故积分是0,所以A正确.对B:因为f(x)是偶函数,所以图象关于y轴对称,故图象都在x轴下方或上方且面积相等,故B正确.C显然正确.D选项中f(x)也可以小于0,但必须有大于0的部分,且f(x)>0的曲线围成的面积比f(x)<0的曲线围成的面积大.
[答案] B
9.利用定积分的有关性质和几何意义可以得出定积分-1[(tanx)11+(cosx)21]dx=
( )
A.2[(tanx)11+(cosx)21]dx
B.0
C.2(cosx)21dx
D.2
[答案] C
[解析] ∵y=tanx为[-1,1]上的奇函数,
∴y=(tanx)11仍为奇函数,而y=(cosx)21是偶函数,
∴原式=-1(cosx)21dx=2(cosx)21dx.故应选C.
10.设f(x)是[a,b]上的连续函数,则f(x)dx-f(t)dt的值( )
A.小于零 B.等于零
C.大于零 D.不能确定
[答案] B
[解析] f(x)dx和f(t)dt都表示曲线y=f(x)与x=a,x=b及y=0围成的曲边梯形面积,不因曲线中变量字母不同而改变曲线的形状和位置.所以其值为0.
二、填空题
11.由y=sinx,x=0,x=,y=0所围成的图形的面积可以写成________.
[答案]
[解析] 由定积分的几何意义可得.
12.(2x-4)dx=________.
[答案] 12
[解析] 如图A(0,-4),B(6,8)
S△AOM=×2×4=4
S△MBC=×4×8=16
∴(2x-4)dx=16-4=12.
13.(2010·新课标全国理,13)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分f(x)dx.先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…,xN和y1,y2,…,yN,由此得到N个点(xi,yi)(i=1,2,…,N).再数出其中满足yi≤f(xi)(i=1,2,…,N)的点数N1,那么由随机模拟方法可得积分f(x)dx的近似值为________.
[答案]
[分析] 本题考查了几何概型、积分的定义等知识,难度不大,但综合性较强,很好的考查了学生对积分等知识的理解和应用,题目比较新颖.
[解析] 因为0≤f(x)≤1且由积分的定义知:f(x)dx是由直线x=0,x=1及曲线y=f(x)与x轴所围成的面积,又产生的随机数对在如图所示的正方形内,正方形面积为1,且满足yi≤f(xi)的有N1个点,即在函数f(x)的图象上及图象下方有N1个点,所以用几何概型的概率公式得:f(x)在x=0到x=1上与x轴围成的面积为×1=,即f(x)dx=.
三、解答题
15.利用定积分的几何意义,说明下列等式.
[解析] (1)2xdx表示由直线y=2x,直线x=0,x=1,y=0所围成的图形的面积,如图所示,阴影部分为直角三角形,所以S△=×1×2=1,故2xdx=1.
(2)-1dx表示由曲线y=,直线x=-1,x=1,y=0所围成的图形面积(而y=表示圆x2+y2=1在x轴上面的半圆),如图所示阴影部分,所以S半圆=,
16.利用定积分的性质求dx.
[解析] y=,y=sin3x均为[-1,1]上的奇函数,而对于f(x)=,
∵f(-x)===-f(x),
此函数为奇函数.
∵S=·2=(i)2
=·n(n+1)(2n+1)
=
∴S=li =
即2x2dx=2×=
17.已知函数f(x)=),求f(x)在区间[-2,2π]上的积分.
[解析] 由定积分的几何意义知
=π2-4.
18.利用定积分的定义计算xdx.
[解析] (1)分割:将区间[a,b]n等分,则每一个小区间长为Δxi=(i=1,2,…,n).
(2)近似代替:在小区间[xi-1,xi]上取点:ξi=a+(i=1,2,…,n).
Ii=f(ξi)·Δxi=·.
(3)求和:In=(ξi)·Δxi
=·
=
=
=
=(b-a)
(4)求极限:xdx=liIn
=li (b-a)
=(b-a)=(b2-a2).选修2-2 3.1 第1课时 数系的扩充与复数的概念
一、选择题
1.下列命题中:
①若a∈R,则(a+1)i是纯虚数;
②若a,b∈R且a>b,则a+i3>b+i2;
③若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1;
④两个虚数不能比较大小.
其中,正确命题的序号是( )
A.①
B.②
C.③
D.④
[答案] D
[分析] 由复数的有关概念逐个判定.
[解析] 对于复数a+bi(a,b∈R),当a=0,且b≠0时为纯虚数.在①中,若a=-1,则(a+1)i不是纯虚数,故①错误;在③中,若x=-1,也不是纯虚数,故③错误;a+i3=a-i,b+i2=b-1,复数a-i与实数b-1不能比较大小,故②错误;④正确.故应选D.
2.(2010·四川理,1)i是虚数单位,计算i+i2+i3=( )
A.-1
B.1
C.-i
D.i
[答案] A
[解析] i+i2+i3=i-1-i=-1.
3.下列命题中假命题是( )
A.不是分数
B.i不是无理数
C.-i2是实数
D.若a∈R,则ai是虚数
[答案] D
[解析] 当a=0时,ai是实数,所以D是假命题,故应选D.
4.对于复数a+bi(a,b∈R),下列结论正确的是( )
A.a=0 a+bi为纯虚数
B.b=0 a+bi为实数
C.a+(b-1)i=3+2i a=3,b=-3
D.-1的平方等于i
[答案] B
[解析] a=0且b≠0时,a+bi为纯虚数,A错误,B正确.a+(b-1)i=3+2i a=3,b=3,C错误.(-1)2=1,D错误.故应选B.
5.若z的实部为lgx2,虚部为lg2x,x是正实数,那么( )
A.使z的实部、虚部都是正数的x的集合是(1,+∞)
B.使z的虚部为负数的x的集合是(0,1)
C.使z的实部和虚部互为相反数的x的集合是{1}
D.使z的实部和虚部互为倒数的x的集合是
[答案] A
[解析] 由解得x>1,A正确.故应选A.
6.复数z=a2-b2+(a+|a|)i(a,b∈R)为实数的充要条件是( )
A.|a|=|b|
B.a<0且a=-b
C.a>0且a≠b
D.a≤0
[答案] D
[解析] 复数z为实数的充要条件是a+|a|=0,而|a|=-a,∴a≤0,故应选D.
7.若sin2θ-1+i(cosθ+1)是纯虚数,则θ的值为( )
A.2kπ-
B.2kπ+
C.2kπ±
D.+(以上k∈Z)
[答案] B
[解析] 由得(k∈Z)
∴θ=2kπ+.选B.
8.若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则( )
A.a=-1
B.a≠-1且a≠2
C.a≠-1
D.a≠2
[答案] C
[解析] 若复数(a2-a-2)+(|a-1|-1)i不是纯虚数,则有a2-a-2≠0或|a-1|-1=0,解得a≠-1.故应选C.
9.下列命题中哪个是真命题( )
A.-1的平方根只有一个
B.i是1的四次方程
C.i是-1的立方根
D.i是方程x6-1=0的根
[答案] B
[解析] ∵(±i)2=-1,∴-1的平方根有两个,故A错;∵i3=-i≠-1.∴i不是-1的立方根;∴C错;
∵i6=i2=-1,∴i6-1≠0故i不是方程x6-1=0的根,故D错;
∵i4=1,∴i是1的四次方根,故选B.
10.已知关于x的方程x2+(m+2i)x+2+2i=0(m∈R)有实数根n,且z=m+ni,则复数z等于( )
A.3+i
B.3-i
C.-3-i
D.-3+i
[答案] B
[解析] 由题意知n2+(m+2i)n+2+2i=0
即,解得.
∴z=3-i,故应选B.
二、填空题
11.方程(2x2-3x-2)+(x2-5x+6)i=0的实数解x=________.
[答案] 2
[解析] 方程可化为
解得x=2.
12.如果z=a2+a-2+(a2-3a+2)i为纯虚数,那么实数a的值为________.
[答案] -2
[解析] 如果z为纯虚数,需,解之得a=-2.
13.已知复数z=-x+(x2-4x+3)i>0,则实数x=________.
[答案] 1
[解析] 复数z能与0比较大小,则复数一定是实数,由题意知,解得x=1.
14.已知复数z1=m+(4+m)i(m∈R),z2=2cosθ+(λ+3cosθ)i(λ∈R),若z1=z2,则λ的取值范围是______.
[答案] [3,5]
[解析] ∵z1=z2,∴
∴λ=4-cosθ.
又∵-1≤cosθ≤1,∴3≤4-cosθ≤5,∴λ∈[3,5].
三、解答题
15.若log2(m2-3m-3)+ilog2(m-2)为纯虚数,求实数m的值.
[解析] ∵log2(m2-3m-3)+ilog2(m-2)为纯虚数,∴
∴m=4,故当m=4时,log2(m2-3m-3)+ilog2(m-2)是纯虚数.
16.已知复数z=+(a2-5a-6)i(a∈R).实数a取什么值时,z是(1)实数?(2)虚数?(3)纯虚数?
[解析] (1)当z为实数时,则有
所以
所以当a=6时,z为实数.
(2)当z为虚数时,则有
所以
即a≠±1且a≠6.
所以当a∈(-∞,-1)∪(-1,1)∪(1,6)∪(6,+∞)时,z为虚数.
(3)当z为纯虚数时,则有
所以
所以不存在实数a使得z为纯虚数.
17.若x∈R,试确定a是什么实数时,等式3x2-x-1=(10-x-2x2)i成立.
[解析] 由复数相等的充要条件,得
由②得x=2或x=-,
代入①,得a=11或a=-.
18.已知z1=+i,z2=cosβ+isinβ,且z1=z2,求cos(α-β)的值.
[解析] 由复数相等的充要条件,知
即
①2+②2得2-2(cosα·cosβ+sinα·sinβ)=1,
即2-2cos(α-β)=1,所以cos(α-β)=.选修2-2 1.7 定积分的简单应用
一、选择题
1.如图所示,阴影部分的面积为( )
A.f(x)dx B.g(x)dx
C.[f(x)-g(x)]dx D.[g(x)-f(x)]dx
[答案] C
[解析] 由题图易知,当x∈[a,b]时,f(x)>g(x),所以阴影部分的面积为[f(x)-g(x)]dx.
2.如图所示,阴影部分的面积是( )
A.2 B.2-
C. D.
[答案] C
[解析] S=-3(3-x2-2x)dx
即F(x)=3x-x3-x2,
则F(1)=3-1-=,
F(-3)=-9-9+9=-9.
∴S=F(1)-F(-3)=+9=.故应选C.
3.由曲线y=x2-1、直线x=0、x=2和x轴围成的封闭图形的面积(如图)是( )
A.(x2-1)dx
B.|(x2-1)dx|
C.|x2-1|dx
D.(x2-1)dx+(x2-1)dx
[答案] C
[解析] y=|x2-1|将x轴下方阴影反折到x轴上方,其定积分为正,故应选C.
4.设f(x)在[a,b]上连续,则曲线f(x)与直线x=a,x=b,y=0围成图形的面积为( )
A.f(x)dx B.|f(x)dx|
C.|f(x)|dx D.以上都不对
[答案] C
[解析] 当f(x)在[a,b]上满足f(x)<0时,f(x)dx<0,排除A;当阴影有在x轴上方也有在x轴下方时,f(x)dx是两面积之差,排除B;无论什么情况C对,故应选C.
5.曲线y=1-x2与x轴所围图形的面积是( )
A.4 B.3
C.2 D.
[答案] B
[解析] 曲线与x轴的交点为,
故应选B.
6.一物体以速度v=(3t2+2t)m/s做直线运动,则它在t
=0s到t=3s时间段内的位移是
( )
A.31m B.36m
C.38m D.40m
[答案] B
[解析] S=(3t2+2t)dt=(t3+t2)=33+32=36(m),故应选B.
7.(2010·山东理,7)由曲线y=x2,y=x3围成的封闭图形面积为( )
A. B.
C. D.
[答案] A
[解析] 由得交点为(0,0),(1,1).
∴S=(x2-x3)dx==.
8.一物体在力F(x)=4x-1(单位:N)的作用下,沿着与力F相同的方向,从x=1运动到x=3处(单位:m),则力F(x)所做的功为( )
A.8J B.10J
C.12J D.14J
[答案] D
[解析] 由变力做功公式有:W=(4x-1)dx=(2x2-x)=14(J),故应选D.
9.若某产品一天内的产量(单位:百件)是时间t的函数,若已知产量的变化率为a=,那么从3小时到6小时期间内的产量为( )
A. B.3-
C.6+3 D.6-3
[答案] D
[解析] dt==6-3,故应选D.
10.过原点的直线l与抛物线y=x2-2ax(a>0)所围成的图形面积为a3,则直线l的方程为( )
A.y=±ax B.y=ax
C.y=-ax D.y=-5ax
[答案] B
[解析] 设直线l的方程为y=kx,
由得交点坐标为(0,0),(2a+k,2ak+k2)
图形面积S=∫[kx-(x2-2ax)]dx
=
=-==a3
∴k=a,∴l的方程为y=ax,故应选B.
二、填空题
11.由曲线y2=2x,y=x-4所围图形的面积是________.
[答案] 18
[解析] 如图,为了确定图形的范围,先求出这两条曲线交点的坐标,解方程组得交点坐标为(2,-2),(8,4).
因此所求图形的面积S=-2(y+4-)dy
取F(y)=y2+4y-,则F′(y)=y+4-,从而S=F(4)-F(-2)=18.
12.一物体沿直线以v=m/s的速度运动,该物体运动开始后10s内所经过的路程是________.
13.由两条曲线y=x2,y=x2与直线y=1围成平面区域的面积是________.
[答案]
[解析] 如图,y=1与y=x2交点A(1,1),y=1与y=交点B(2,1),由对称性可知面积S=2(x2dx+dx-x2dx)=.
14.一变速运动物体的运动速度v(t)=
则该物体在0≤t≤e时间段内运动的路程为(速度单位:m/s,时间单位:s)______________________.
[答案] 9-8ln2+
[解析] ∵0≤t≤1时,v(t)=2t,∴v(1)=2;
又1≤t≤2时,v(t)=at,
∴v(1)=a=2,v(2)=a2=22=4;
又2≤t≤e时,v(t)=,
∴v(2)==4,∴b=8.
∴路程为S=2tdt+2tdt+dt=9-8ln2+ .
三、解答题
15.计算曲线y=x2-2x+3与直线y=x+3所围图形的面积.
[解析] 由解得x=0及x=3.
从而所求图形的面积
S=(x+3)dx-(x2-2x+3)dx
=[(x+3)-(x2-2x+3)]dx
=(-x2+3x)dx
==.
16.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.
(1)求y=f(x)的表达式;
(2)若直线x=-t(0<t<1)把y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.
[解析] (1)设f(x)=ax2+bx+c(a≠0),则f′(x)=2ax+b,
又已知f′(x)=2x+2,∴a=1,b=2,
∴f(x)=x2+2x+c.
又方程f(x)=0有两个相等实根.
∴判别式Δ=4-4c=0,即c=1.
故f(x)=x2+2x+1.
(2)依题意有(x2+2x+1)dx=-t(x2+2x+1)dx,
∴=
即-t3+t2-t+=t3-t2+t.
∴2t3-6t2+6t-1=0,
∴2(t-1)3=-1,∴t=1- .
17.A、B两站相距7.2km,一辆电车从A站开往B站,电车开出ts后到达途中C点,这一段速度为1.2t(m/s),到C点的速度达24m/s,从C点到B站前的D点以等速行驶,从D点开始刹车,经ts后,速度为(24-1.2t)m/s,在B点恰好停车,试求:
(1)A、C间的距离;
(2)B、D间的距离;
(3)电车从A站到B站所需的时间.
[解析] (1)设A到C经过t1s,
由1.2t=24得t1=20(s),
所以AC=∫1.2tdt=0.6t2=240(m).
(2)设从D→B经过t2s,
由24-1.2t2=0得t2=20(s),
所以DB=∫(24-1.2t)dt=240(m).
(3)CD=7200-2×240=6720(m).
从C到D的时间为t3==280(s).
于是所求时间为20+280+20=320(s).
18.在曲线y=x2(x≥0)上某一点A处作一切线使之与曲线以及x轴所围成的面积为,试求:
(1)切点A的坐标;
(2)过切点A的切线方程.
[解析] 如图所示,设切点A(x0,y0),由y′=2x,过A点的切线方程为y-y0=2x0(x-x0),
即y=2x0x-x.
令y=0得x=,即C.
设由曲线和过A点的切线及x轴所围成图形的面积为S,
S=S曲边△AOB-S△ABC.
S曲边△AOB=∫x00x2dx=x,
S△ABC=|BC|·|AB|
=·x=x,
即S=x-x=x=.
所以x0=1,从而切点A(1,1),切线方程为y=2x-1.选修2-2 1.6 微积分基本定理
一、选择题
1.下列积分正确的是( )
[答案] A
A. B.
C. D.
[答案] A
[解析] -2dx=-2x2dx+-2dx
=x3+
=(x3-x-3)
=-=.
故应选A.
3.-1|x|dx等于( )
A.-1xdx B.-1dx
C.-1(-x)dx+xdx D.-1xdx+(-x)dx
[答案] C
[解析] ∵|x|=
∴-1|x|dx=-1|x|dx+|x|dx
=-1(-x)dx+xdx,故应选C.
4.设f(x)=,则f(x)dx等于( )
A. B.
C. D.不存在
[答案] C
[解析] f(x)dx=x2dx+(2-x)dx
取F1(x)=x3,F2(x)=2x-x2,
则F′1(x)=x2,F′2(x)=2-x
∴f(x)dx=F1(1)-F1(0)+F2(2)-F2(1)
=-0+2×2-×22-=.故应选C.
5.f′(3x)dx=( )
A.f(b)-f(a) B.f(3b)-f(3a)
C.[f(3b)-f(3a)] D.3[f(3b)-f(3a)]
[答案] C
[解析] ∵′=f′(3x)
∴取F(x)=f(3x),则
f′(3x)dx=F(b)-F(a)=[f(3b)-f(3a)].故应选C.
6.|x2-4|dx=( )
A. B.
C. D.
[答案] C
[解析] |x2-4|dx=(4-x2)dx+(x2-4)dx
=+=.
A.- B.-
C. D.
[答案] D
[解析] ∵1-2sin2=cosθ
8.函数F(x)=costdt的导数是( )
A.cosx B.sinx
C.-cosx D.-sinx
[答案] A
[解析] F(x)=costdt=sint=sinx-sin0=sinx.
所以F′(x)=cosx,故应选A.
9.若(2x-3x2)dx=0,则k=( )
A.0 B.1
C.0或1 D.以上都不对
[答案] C
[解析] (2x-3x2)dx=(x2-x3)=k2-k3=0,
∴k=0或1.
10.函数F(x)=t(t-4)dt在[-1,5]上( )
A.有最大值0,无最小值
B.有最大值0和最小值-
C.有最小值-,无最大值
D.既无最大值也无最小值
[答案] B
[解析] F(x)=(t2-4t)dt==x3-2x2(-1≤x≤5).
F′(x)=x2-4x,由F′(x)=0得x=0或x=4,列表如下:
x (-1,0) 0 (0,4) 4 (4,5)
F′(x) + 0 - 0 +
F(x) ? 极大值 极小值 ?
可见极大值F(0)=0,极小值F(4)=-.
又F(-1)=-,F(5)=-
∴最大值为0,最小值为-.
二、填空题
11.计算定积分:
①-1x2dx=________
②dx=________
③|x2-1|dx=________
④-|sinx|dx=________
[答案] ;;2;1
[解析] ①-1x2dx=x3=.
②dx==.
③|x2-1|dx=(1-x2)dx+(x2-1)dx
=+=2.
[答案] 1+
13.(2010·陕西理,13)从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为________.
[答案]
[解析] 长方形的面积为S1=3,S阴=3x2dx=x3=1,则P==.
14.已知f(x)=3x2+2x+1,若-1f(x)dx=2f(a)成立,则a=________.
[答案] -1或
[解析] 由已知F(x)=x3+x2+x,F(1)=3,F(-1)=-1,
∴-1f(x)dx=F(1)-F(-1)=4,
∴2f(a)=4,∴f(a)=2.
即3a2+2a+1=2.解得a=-1或.
三、解答题
15.计算下列定积分:
(1)2xdx;(2)(x2-2x)dx;
(3)(4-2x)(4-x2)dx;(4)dx.
[解析] (1)2xdx=x2=25-0=25.
(2)(x2-2x)dx=x2dx-2xdx
=x3-x2=-1=-.
(3)(4-2x)(4-x2)dx=(16-8x-4x2+2x3)dx
=
=32-16-+8=.
(4)dx=dx
==-3ln2.
16.计算下列定积分:
[解析] (1)取F(x)=sin2x,则F′(x)=cos2x
==(2-).
(2)取F(x)=+lnx+2x,则
F′(x)=x++2.
∴2dx=dx
=F(3)-F(2)
=-
=+ln.
(3)取F(x)=x2-cosx,则F′(x)=3x+sinx
17.计算下列定积分:
(1)-4|x+2|dx;
(2)已知f(x)=,求-1f(x)dx的值.
[解析] (1)∵f(x)=|x+2|=
∴-4|x+2|dx=-(x+2)dx+-2(x+2)dx
=-+
=2+2=4.
(2)∵f(x)=
∴-1f(x)dx=-1f(x)dx+f(x)dx+f(x)dx+f(x)dx=(1-x)dx+(x-1)dx
=+
=+=1.
18.(1)已知f(a)=(2ax2-a2x)dx,求f(a)的最大值;
(2)已知f(x)=ax2+bx+c(a≠0),且f(-1)=2,f′(0)=0,f(x)dx=-2,求a,b,c的值.
[解析] (1)取F(x)=ax3-a2x2
则F′(x)=2ax2-a2x
∴f(a)=(2ax2-a2x)dx
=F(1)-F(0)=a-a2
=-2+
∴当a=时,f(a)有最大值.
(2)∵f(-1)=2,∴a-b+c=2①
又∵f′(x)=2ax+b,∴f′(0)=b=0②
而f(x)dx=(ax2+bx+c)dx
取F(x)=ax3+bx2+cx
则F′(x)=ax2+bx+c
∴f(x)dx=F(1)-F(0)=a+b+c=-2③
解①②③得a=6,b=0,c=-4.选修2-2 3.1.2 复数的几何意义
一、选择题
1.如果复数a+bi(a,b∈R)在复平面内的对应点在第二象限,则( )
A.a>0,b<0
B.a>0,b>0
C.a<0,b<0
D.a<0,b>0
[答案] D
[解析] 复数z=a+bi在复平面内的对应点坐标为(a,b),该点在第二象限,需a<0且b>0,故应选D.
2.(2010·北京文,2)在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( )
A.4+8i
B.8+2i
C.2+4i
D.4+i
[答案] C
[解析] 由题意知A(6,5),B(-2,3),AB中点C(x,y),则x==2,y==4,
∴点C对应的复数为2+4i,故选C.
3.当
A.第一象限
B.第二象限
C.第三象限
D.第四象限
[答案] D
[解析] ∵<m<1,∴3m-2>0,m-1<0,
∴点(3m-2,m-1)在第四象限.
4.复数z=-2(sin100°-icos100°)在复平面内所对应的点Z位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
[答案] C
[解析] z=-2sin100°+2icos100°.
∵-2sin100°<0,2cos100°<0,
∴Z点在第三象限.故应选C.
5.若a、b∈R,则复数(a2-6a+10)+(-b2+4b-5)i对应的点在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
[答案] D
[解析] a2-6a+10=(a-3)2+1>0,-b2+4b-5
=-(b-2)2-1<0.所以对应点在第四象限,故应选D.
6.设z=(2t2+5t-3)+(t2+2t+2)i,t∈R,则以下结论中正确的是( )
A.z对应的点在第一象限
B.z一定不是纯虚数
C.z对应的点在实轴上方
D.z一定是实数
[答案] C
[解析] ∵2t2+5t-3=(t+3)(2t-1)的值可正、可负、可为0,t2+2t+2=(t+1)2+1≥1,∴排除A、B、D,选C.
7.下列命题中假命题是( )
A.复数的模是非负实数
B.复数等于零的充要条件是它的模等于零
C.两个复数模相等是这两个复数相等的必要条件
D.复数z1>z2的充要条件是|z1|>|z2|
[答案] D
[解析] ①任意复数z=a+bi(a、b∈R)的模|z|=≥0总成立.∴A正确;
②由复数相等的条件z=0 . |z|=0,故B正确;
③若z1=a1+b1i,z2=a2+b2i(a1、b1、a2、b2∈R)
若z1=z2,则有a1=a2,b1=b2,∴|z1|=|z2|
反之由|z1|=|z2|,推不出z1=z2,
如z1=1+3i,z2=1-3i时|z1|=|z2|,故C正确;
④不全为零的两个复数不能比较大小,但任意两个复数的模总能比较大小,∴D错.
8.已知复数z=(x-1)+(2x-1)i的模小于,则实数x的取值范围是( )
A.-
B.x<2
C.x>-
D.x=-或x=2
[答案] A
[解析] 由题意知(x-1)2+(2x-1)2<10,
解之得-
9.已知复数z1=a+bi(a,b∈R),z2=-1+ai,若|z1|<|z2|,则实数b适合的条件是( )
A.b<-1或b>1
B.-1
C.b>1
D.b>0
[答案] B
[解析] 由|z1|<|z2|得<,
∴b2<1,则-1
10.复平面内向量表示的复数为1+i,将向右平移一个单位后得到向量,则向量与点A′对应的复数分别为( )
A.1+i,1+i
B.2+i,2+i
C.1+i,2+i
D.2+i,1+i
[答案] C
[解析] 由题意=,对应复数为1+i,点A′对应复数为1+(1+i)=2+i.
二、填空题
11.如果复数z=(m2+m-1)+(4m2-8m+3)i(m∈R)对应的点在第一象限,则实数m的取值范围为________________.
[答案] ∪
[解析] 复数z对应的点在第一象限
需解得:m<或m>.
12.设复数z的模为17,虚部为-8,则复数z=________.
[答案] ±15-8i
[解析] 设复数z=a-8i,由=17,
∴a2=225,a=±15,z=±15-8i.
13.已知z=(1+i)m2-(8+i)m+15-6i(m∈R),若复数z对应点位于复平面上的第二象限,则m的取值范围是________.
[答案] 3
[解析] 将复数z变形为z=(m2-8m+15)+(m2-m-6)i
∵复数z对应点位于复平面上的第二象限
∴解得3
14.若t∈R,t≠-1,t≠0,复数z=+i的模的取值范围是________.
[答案] [,+∞)
[解析] |z|2=2+2≥2·=2.
∴|z|≥.
三、解答题
15.实数m取什么值时,复平面内表示复数z=2m+(4-m2)i的点
(1)位于虚轴上;
(2)位于一、三象限;
(3)位于以原点为圆心,以4为半径的圆上.
[解析] (1)若复平面内对应点位于虚轴上,则2m=0,即m=0.
(2)若复平面内对应点位于一、三象限,则2m(4-m2)>0,解得m<-2或0
(3)若对应点位于以原点为圆心,4为半径的圆上,
则=4
即m4-4m2=0,解得m=0或m=±2.
16.已知z1=x2+i,z2=(x2+a)i,对于任意的x∈R,均有|z1|>|z2|成立,试求实数a的取值范围.
[解析] |z1|=,|z2|=|x2+a|
因为|z1|>|z2|,所以>|x2+a|
x4+x2+1>(x2+a)2 (1-2a)x2+(1-a2)>0恒成立.
不等式等价于1-2a=0或
解得-1
所以a的取值范围为.
17.已知z1=cosθ+isin2θ,z2=sinθ+icosθ,当θ为何值时
(1)z1=z2;
(2)z1,z2对应点关于x轴对称;
(3)|z2|<.
[解析] (1)z1=z2
θ=2kπ+(k∈Z).
(2)z1与z2对应点关于x轴对称
θ=2kπ+π(k∈Z).
(3)|z2|< <
3sin2θ+cos2θ<2 sin2θ<
kπ-<θ
18.已知复数z1=-i及z2=-+i.
(1)求||及||的值并比较大小;
(2)设z∈C,满足条件|z2|≤|z|≤|z1|的点Z的轨迹是什么图形?
[解析] (1)||=|+i|==2
||==1.∴||>||.
(2)由|z2|≤|z|≤|z1|,得1≤|z|≤2.
因为|z|≥1表示圆|z|=1外部所有点组成的集合.
|z|≤2表示圆|z|=2内部所有点组成的集合,
∴1≤|z|≤2表示如图所示的圆环.选修2-2 1.1 第3课时 导数的几何意义
一、选择题
1.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么( )
A.f′(x0)>0 B.f′(x0)<0
C.f′(x0)=0 D.f′(x0)不存在
[答案] B
[解析] 切线x+2y-3=0的斜率k=-,即f′(x0)=-<0.故应选B.
2.曲线y=x2-2在点处切线的倾斜角为( )
A.1 B.
C.π D.-
[答案] B
[解析] ∵y′=li
=li (x+Δx)=x
∴切线的斜率k=y′|x=1=1.
∴切线的倾斜角为,故应选B.
3.在曲线y=x2上切线的倾斜角为的点是( )
A.(0,0) B.(2,4)
C. D.
[答案] D
[解析] 易求y′=2x,设在点P(x0,x)处切线的倾斜角为,则2x0=1,∴x0=,∴P.
4.曲线y=x3-3x2+1在点(1,-1)处的切线方程为( )
A.y=3x-4 B.y=-3x+2
C.y=-4x+3 D.y=4x-5
[答案] B
[解析] y′=3x2-6x,∴y′|x=1=-3.
由点斜式有y+1=-3(x-1).即y=-3x+2.
5.设f(x)为可导函数,且满足 =-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为( )
A.2 B.-1
C.1 D.-2
[答案] B
[解析] =
=-1,即y′|x=1=-1,
则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B.
6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )
A.不存在 B.与x轴平行或重合
C.与x轴垂直 D.与x轴斜交
[答案] B
[解析] 由导数的几何意义知B正确,故应选B.
7.已知曲线y=f(x)在x=5处的切线方程是y=-x+8,则f(5)及f′(5)分别为( )
A.3,3 B.3,-1
C.-1,3 D.-1,-1
[答案] B
[解析] 由题意易得:f(5)=-5+8=3,f′(5)=-1,故应选B.
8.曲线f(x)=x3+x-2在P点处的切线平行于直线y=4x-1,则P点的坐标为( )
A.(1,0)或(-1,-4) B.(0,1)
C.(-1,0) D.(1,4)
[答案] A
[解析] ∵f(x)=x3+x-2,设xP=x0,
∴Δy=3x·Δx+3x0·(Δx)2+(Δx)3+Δx,
∴=3x+1+3x0(Δx)+(Δx)2,
∴f′(x0)=3x+1,又k=4,
∴3x+1=4,x=1.∴x0=±1,
故P(1,0)或(-1,-4),故应选A.
9.设点P是曲线y=x3-x+上的任意一点,P点处的切线倾斜角为α,则α的取值范围为( )
A.∪ B.∪
C. D.
[答案] A
[解析] 设P(x0,y0),
∵f′(x)=li
=3x2-,∴切线的斜率k=3x-,
∴tanα=3x-≥-.
∴α∈∪.故应选A.
10.(2010·福州高二期末)设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为[0,],则点P横坐标的取值范围为( )
A.[-1,-] B.[-1,0]
C.[0,1] D.[,1]
[答案] A
[解析] 考查导数的几何意义.
∵y′=2x+2,且切线倾斜角θ∈[0,],
∴切线的斜率k满足0≤k≤1,即0≤2x+2≤1,
∴-1≤x≤-.
二、填空题
11.已知函数f(x)=x2+3,则f(x)在(2,f(2))处的切线方程为________.
[答案] 4x-y-1=0
[解析] ∵f(x)=x2+3,x0=2
∴f(2)=7,Δy=f(2+Δx)-f(2)=4·Δx+(Δx)2
∴=4+Δx.∴li =4.即f′(2)=4.
又切线过(2,7)点,所以f(x)在(2,f(2))处的切线方程为y-7=4(x-2)
即4x-y-1=0.
12.若函数f(x)=x-,则它与x轴交点处的切线的方程为________.
[答案] y=2(x-1)或y=2(x+1)
[解析] 由f(x)=x-=0得x=±1,即与x轴交点坐标为(1,0)或(-1,0).
∵f′(x)=li
=li =1+.
∴切线的斜率k=1+=2.
∴切线的方程为y=2(x-1)或y=2(x+1).
13.曲线C在点P(x0,y0)处有切线l,则直线l与曲线C的公共点有________个.
[答案] 至少一
[解析] 由切线的定义,直线l与曲线在P(x0,y0)处相切,但也可能与曲线其他部分有公共点,故虽然相切,但直线与曲线公共点至少一个.
14.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为________.
[答案] 3x-y-11=0
[解析] 设切点P(x0,y0),则过P(x0,y0)的切线斜率为,它是x0的函数,求出其最小值.
设切点为P(x0,y0),过点P的切线斜率k==3x+6x0+6=3(x0+1)2+3.当x0=-1时k有最小值3,此时P的坐标为(-1,-14),其切线方程为3x-y-11=0.
三、解答题
15.求曲线y=-上一点P处的切线方程.
[解析] ∴y′=
=
= =-- .
∴y′|x=4=--=-,
∴曲线在点P处的切线方程为:
y+=-(x-4).
即5x+16y+8=0.
16.已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.
(1)求使直线l和y=f(x)相切且以P为切点的直线方程;
(2)求使直线l和y=f(x)相切且切点异于点P的直线方程y=g(x).
[解析] (1)y′=li =3x2-3.
则过点P且以P(1,-2)为切点的直线的斜率
k1=f′(1)=0,
∴所求直线方程为y=-2.
(2)设切点坐标为(x0,x-3x0),
则直线l的斜率k2=f′(x0)=3x-3,
∴直线l的方程为y-(x-3x0)=(3x-3)(x-x0)
又直线l过点P(1,-2),
∴-2-(x-3x0)=(3x-3)(1-x0),
∴x-3x0+2=(3x-3)(x0-1),
解得x0=1(舍去)或x0=-.
故所求直线斜率k=3x-3=-,
于是:y-(-2)=-(x-1),即y=-x+.
17.求证:函数y=x+图象上的各点处的切线斜率小于1.
[解析] y′=li
=li
=li
=li
==1-<1,
∴y=x+图象上的各点处的切线斜率小于1.
18.已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.
(1)求直线l2的方程;
(2)求由直线l1、l2和x轴所围成的三角形的面积.
[解析] (1)y′|x=1
=li =3,
所以l1的方程为:y=3(x-1),即y=3x-3.
设l2过曲线y=x2+x-2上的点B(b,b2+b-2),
y′|x=b=li
=2b+1,所以l2的方程为:y-(b2+b-2)=(2b+1)·(x-b),即y=(2b+1)x-b2-2.
因为l1⊥l2,所以3×(2b+1)=-1,所以b=-,所以l2的方程为:y=-x-.
(2)由得
即l1与l2的交点坐标为.
又l1,l2与x轴交点坐标分别为(1,0),.
所以所求三角形面积S=××=.选修2-2 2.2.2 反证法
一、选择题
1.否定结论“至多有两个解”的说法中,正确的是( )
A.有一个解
B.有两个解
C.至少有三个解
D.至少有两个解
[答案] C
[解析] 在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.
2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为( )
A.a、b、c都是奇数
B.a、b、c或都是奇数或至少有两个偶数
C.a、b、c都是偶数
D.a、b、c中至少有两个偶数
[答案] B
[解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.
3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )
A.假设三内角都不大于60°
B.假设三内角都大于60°
C.假设三内角至多有一个大于60°
D.假设三内角至多有两个大于60°
[答案] B
[解析] “至少有一个不大于”的否定是“都大于60°”.故应选B.
4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是( )
A.假设a,b,c都是偶数
B.假设a、b,c都不是偶数
C.假设a,b,c至多有一个偶数
D.假设a,b,c至多有两个偶数
[答案] B
[解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.
5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是( )
A.a
B.a≤b
C.a=b
D.a≥b
[答案] B
[解析] “a>b”的否定应为“a=b或a
6.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为( )
A.一定是异面直线
B.一定是相交直线
C.不可能是平行直线
D.不可能是相交直线
[答案] C
[解析] 假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.
7.设a,b,c∈(-∞,0),则三数a+,c+,b+中( )
A.都不大于-2
B.都不小于-2
C.至少有一个不大于-2
D.至少有一个不小于-2
[答案] C
[解析] ++
=++
∵a,b,c∈(-∞,0),
∴a+=-≤-2
b+=-≤-2
c+=-≤-2
∴++≤-6
∴三数a+、c+、b+中至少有一个不大于-2,故应选C.
8.若P是两条异面直线l、m外的任意一点,则( )
A.过点P有且仅有一条直线与l、m都平行
B.过点P有且仅有一条直线与l、m都垂直
C.过点P有且仅有一条直线与l、m都相交
D.过点P有且仅有一条直线与l、m都异面
[答案] B
[解析] 对于A,若存在直线n,使n∥l且n∥m
则有l∥m,与l、m异面矛盾;对于C,过点P与l、m都相交的直线不一定存在,反例如图(l∥α);对于D,过点P与l、m都异面的直线不唯一.
9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是( )
A.甲
B.乙
C.丙
D.丁
[答案] C
[解析] 因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C.
10.已知x1>0,x1≠1且xn+1=(n=1,2…),试证“数列{xn}或者对任意正整数n都满足xn
xn+1”,当此题用反证法否定结论时,应为( )
A.对任意的正整数n,都有xn=xn+1
B.存在正整数n,使xn=xn+1
C.存在正整数n,使xn≥xn+1且xn≤xn-1
D.存在正整数n,使(xn-xn-1)(xn-xn+1)≥0
[答案] D
[解析] 命题的结论是“对任意正整数n,数列{xn}是递增数列或是递减数列”,其反设是“存在正整数n,使数列既不是递增数列,也不是递减数列”.故应选D.
二、填空题
11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.
[答案] 没有一个是三角形或四边形或五边形
[解析] “至少有一个”的否定是“没有一个”.
12.用反证法证明命题“a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.
[答案] a,b都不能被5整除
[解析] “至少有一个”的否定是“都不能”.
13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:
①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;
②所以一个三角形中不能有两个直角;
③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.
正确顺序的序号排列为____________.
[答案] ③①②
[解析] 由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.
14.用反证法证明质数有无限多个的过程如下:
假设______________.设全体质数为p1、p2、…、pn,令p=p1p2…pn+1.
显然,p不含因数p1、p2、…、pn.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、pn之外,还有质数,因此原假设不成立.于是,质数有无限多个.
[答案] 质数只有有限多个 除p1、p2、…、pn之外
[解析] 由反证法的步骤可得.
三、解答题
15.已知:a+b+c>0,ab+bc+ca>0,abc>0.
求证:a>0,b>0,c>0.
[证明] 用反证法:
假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数,
不妨设a<0,b<0,c>0,则由a+b+c>0,
可得c>-(a+b),
又a+b<0,∴c(a+b)<-(a+b)(a+b)
ab+c(a+b)<-(a+b)(a+b)+ab
即ab+bc+ca<-a2-ab-b2
∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,
这与已知ab+bc+ca>0矛盾,所以假设不成立.
因此a>0,b>0,c>0成立.
16.已知a,b,c∈(0,1).求证:(1-a)b,(1-b)c,(1-c)a不能同时大于.
[证明] 证法1:假设(1-a)b、(1-b)c、(1-c)a都大于.∵a、b、c都是小于1的正数,∴1-a、1-b、1-c都是正数.≥>=,
同理>,>.
三式相加,得
++>,
即>,矛盾.
所以(1-a)b、(1-b)c、(1-c)a不能都大于.
证法2:假设三个式子同时大于,即(1-a)b>,(1-b)c>,(1-c)a>,三式相乘得
(1-a)b(1-b)c(1-c)a>3①
因为0
同理,0
所以(1-a)a(1-b)b(1-c)c≤3.②
因为①与②矛盾,所以假设不成立,故原命题成立.
17.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R.
(1)若a+b≥0,求证:f(a)+f(b)≥f(-a)+f(-b);
(2)判断(1)中命题的逆命题是否成立,并证明你的结论.
[解析] (1)证明:∵a+b≥0,∴a≥-b.
由已知f(x)的单调性得f(a)≥f(-b).
又a+b≥0 b≥-a f(b)≥f(-a).
两式相加即得:f(a)+f(b)≥f(-a)+f(-b).
(2)逆命题:
f(a)+f(b)≥f(-a)+f(-b) a+b≥0.
下面用反证法证之.
假设a+b<0,那么:
f(a)+f(b)
这与已知矛盾,故只有a+b≥0.逆命题得证.
18.(2010·湖北理,20改编)已知数列{bn}的通项公式为bn=n-1.求证:数列{bn}中的任意三项不可能成等差数列.
[解析] 假设数列{bn}存在三项br、bs、bt(r
bs>br,则只可能有2bs=br+bt成立.
∴2·s-1=r-1+t-1.
两边同乘3t-121-r,化简得3t-r+2t-r=2·2s-r3t-s,
由于r
故数列{bn}中任意三项不可能成等差数列.选修2-2 2.2 第1课时 综合法与分析法
一、选择题
1.证明命题“f(x)=ex+在(0,+∞)上是增函数”,一个同学给出的证法如下:
∵f(x)=ex+,∴f′(x)=ex-.
∵x>0,∴ex>1,0<<1
∴ex->0,即f′(x)>0,
∴f(x)在(0,+∞)上是增函数,他使用的证明方法是( )
A.综合法 B.分析法
C.反证法 D.以上都不是
[答案] A
[解析] 该证明方法符合综合法的定义,应为综合法.故应选A.
2.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:
A.a-b>0 B.a-c>0
C.(a-b)(a-c)>0 D.(a-b)(a-c)<0
[答案] C
[解析] 要证
只需证b2-ac<3a2
只需证b2-a(-b-a)<3a2
只需证2a2-ab-b2>0.
只需证(2a+b)(a-b)>0,
只需证(a-c)(a-b)>0.
故索的因应为C.
3.p=+,q=·(m、n、a、b、c、d均为正数),则p、q的大小为( )
A.p≥q B.p≤q
C.p>q D.不确定
[答案] B
[解析] q=
≥=+=p.
4.已知函数f(x)=x,a、b∈R+,A=f,B=f(),C=f,则A、B、C的大小关系为( )
A.A≤B≤C B.A≤C≤B
C.B≤C≤A D.C≤B≤A
[答案] A
[解析] ≥≥,又函数f(x)=x在(-∞,+∞)上是单调减函数,
∴f≤f()≤f.
5.对任意的锐角α、β,下列不等式关系中正确的是( )
A.sin(α+β)>sinα+sinβ
B.sin(α+β)>cosα+cosβ
C.cos(α+β)>sinα+sinβ
D.cos(α+β)
[答案] D
[解析] ∵α、β为锐角,∴0<α<α+β<π,
∴cosα>cos(α+β)
又cosβ>0,∴cosα+cosβ>cos(α+β).
6.设a、b、c∈R+,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R同时大于零”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
[答案] C
[解析] 首先若P、Q、R同时大于零,则必有PQR>0成立.
其次,若PQR>0,且P、Q、R不都大于0,则必有两个为负,不妨设P<0,Q<0,即a+b-c<0,b+c-a<0,
∴b<0与b∈R+矛盾,故P、Q、R都大于0.
7.已知y>x>0,且x+y=1,那么( )
A.x<
C.x<<2xy
[答案] D
[解析] ∵y>x>0,且x+y=1,∴设y=,x=,则=,2xy=.所以有x<2xy<
8.下面的四个不等式:
①a2+b2+c2≥ab+bc+ca;②a(1-a)≤;
③+≥2;④(a2+b2)·(c2+d2)≥(ac+bd)2.
其中恒成立的有( )
A.1个 B.2个
C.3个 D.4个
[答案] C
[解析] ∵(a2+b2+c2)-(ab+bc+ac)=[(a-b)2+(b-c)2+(c-a)2]≥0
a(1-a)-=-a2+a-=-2≤0,
(a2+b2)·(c2+d2)=a2c2+a2d2+b2c2+b2d2
≥a2c2+2abcd+b2d2=(ac+bd)2.∴应选C.
9.若x,y∈R+,且+≤a恒成立,则a的最小值是( )
A.2 B.
C.2 D.1
[答案] B
[解析] 原不等式可化为
a≥==
要使不等式恒成立,只需a不小于的最大值即可.
∵≤,当x=y时取等号,∴a≥,
∴a的最小值为.故应选B.
10.类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,S(x)=,C(x)=,其中a>0,且a≠1,下面正确的运算公式是( )
①S(x+y)=S(x)C(y)+C(x)S(y);
②S(x-y)=S(x)C(y)-C(x)S(y);
③C(x+y)=C(x)C(y)-S(x)S(y);
④C(x-y)=C(x)C(y)+S(x)S(y).
A.①③ B.②④
C.①④ D.①②③④
[答案] D
[解析] ∵S(x)=,C(x)=,
∴S(x+y)=,
S(x)C(y)+C(x)S(y)
=·+·
=
==.
∴S(x+y)=S(x)C(y)+C(x)S(y)
同理:S(x-y)=S(x)C(y)-C(x)S(y)
C(x+y)=C(x)C(y)-S(x)S(y)
C(x-y)=C(x)C(y)+S(x)S(y).应选D.
二、填空题
11.如果a+b>a+b,则实数a、b应满足的条件是________.
[答案] a≥0,b≥0且a≠b
[解析] ∵a+b>a+b
(-)2(+)>0 a≥0,b≥0且a≠b.
12.设a>0,b>0,则下面两式的大小关系为lg(1+)________[lg(1+a)+lg(1+b)].
[答案] ≤
[解析] ∵(1+)2-(1+a)(1+b)
=1+2+ab-1-a-b-ab
=2-(a+b)=-(-)2≤0
∴(1+)2≤(1+a)(1+b),
∴lg(1+)≤[lg(1+a)+lg(1+b)].
13.如果不等式|x-a|<1成立的充分非必要条件是
[答案] ≤a≤
[解析] |x-a|<1 a-1<x<a+1
由题意知?(a-1,a+1)则有,
(且等号不同时成立)解得≤a≤.
14.给出下列不等式:
①a>b>0,且a2+=1,则ab>a2b2;
②a,b∈R,且ab<0,则≤-2;
③a>b>0,m>0,则>;
④≥4(x≠0).
其中正确不等式的序号为________.
[答案] ①②④
[解析] ①a>b>0,∴a≠
∴a2+=1>2=ab
∴1-ab>0,∴ab-a2b2=ab(1-ab)>0,∴ab>a2b2正确.
②+2=
∵ab<0,(a+b)2≥0,∴≤-2,②正确;
③-=
∵a>b>0,m>0,
∴b(b+m)>0,b-a<0,∴<0,
∴<,③不正确.
④=|x|+≥4,④正确.
三、解答题
15.设a>0,b>0,a+b=1.
求证:(1)++≥8;
(2)2+2≥.
[证明] (1)∵a>0,b>0,a+b=1,
∴1=a+b≥2,≤,∴≥4.
∴++=(a+b)+
≥2·2+4=8,∴++≥8.
(2)∵≤,则≥2
∴2+2≥22
=≥≥.
∴2+2≥.
16.已知a>b>0,求证<-<.
[证明] 欲证<-<成立.
只需证
2<(-)2<2
<-< <1<
1+<2<1+ <1< <1<.
∵a>b>0,∴<1<成立.
从而,有<-<.
17.已知a、b、c表示△ABC的三边长,m>0,
求证:+>.
[证明] 要证明+>
只需证明+->0即可
∴+-
=
∵a>0,b>0,c>0,m>0
∴(a+m)(b+m)(c+m)>0
∵a(b+m)(c+m)+b(a+m)(c+m)-c(a+m)(b+m)=abc+abm+acm+am2+abc+abm+bcm+bm2-abc-bcm-acm-cm2=2abm+am2+abc+bm2-cm2
=2abm+abc+(a+b-c)m2
∵△ABC中任意两边之和大于第三边
∴a+b-c>0,∴(a+b-c)m2>0
∴2abm+abc+(a+b-c)m2>0
∴+>.
18.若a,b,c为不全相等的正数,求证:lg+lg+lg>lga+lgb+lgc.
[证明] 要证lg+lg+lg>lga+lgb+lgc,只需证lg>lg(a·b·c),
即证··>abc.
因为a,b,c为不全相等的正数,
所以≥>0,≥>0,≥>0,
且上述三式中等号不能同时成立.
所以··>abc成立,
所以lg+lg+lg>lga+lgb+lgc成立.选修2-2 2. 3 数学归纳法
一、选择题
1.用数学归纳法证明1+++…+
1)时,第一步应验证不等式( )
A.1+<2
B.1++<2
C.1++<3
D.1+++<3
[答案] B
[解析] ∵n∈N*,n>1,∴n取第一个自然数为2,左端分母最大的项为=,故选B.
2.用数学归纳法证明1+a+a2+…+an+1=(n∈N*,a≠1),在验证n=1时,左边所得的项为( )
A.1
B.1+a+a2
C.1+a
D.1+a+a2+a3
[答案] B
[解析] 因为当n=1时,an+1=a2,所以此时式子左边=1+a+a2.故应选B.
3.设f(n)=++…+(n∈N*),那么f(n+1)-f(n)等于( )
A. B.
C.+ D.-
[答案] D
[解析] f(n+1)-f(n)
=
-=+-
=-.
4.某个命题与自然数n有关,若n=k(k∈N*)时,该命题成立,那么可推得n=k+1时该命题也成立.现在已知当n=5时,该命题不成立,那么可推得( )
A.当n=6时该命题不成立
B.当n=6时该命题成立
C.当n=4时该命题不成立
D.当n=4时该命题成立
[答案] C
[解析] 原命题正确,则逆否命题正确.故应选C.
5.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步的证明时,正确的证法是( )
A.假设n=k(k∈N*),证明n=k+1时命题也成立
B.假设n=k(k是正奇数),证明n=k+1时命题也成立
C.假设n=k(k是正奇数),证明n=k+2时命题也成立
D.假设n=2k+1(k∈N),证明n=k+1时命题也成立
[答案] C
[解析] ∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C.
6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为( )
A.f(n)+n+1
B.f(n)+n
C.f(n)+n-1
D.f(n)+n-2
[答案] C
[解析] 增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.
7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证( )
A.n=1时命题成立
B.n=1,n=2时命题成立
C.n=3时命题成立
D.n=1,n=2,n=3时命题成立
[答案] D
[解析] 假设n=k时不等式成立,即2k>k2-2,
当n=k+1时2k+1=2·2k>2(k2-2)
由2(k2-2)≥(k-1)2-4 k2-2k-3≥0
(k+1)(k-3)≥0 k≥3,因此需要验证n=1,2,3时命题成立.故应选D.
8.已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为( )
A.30
B.26
C.36
D.6
[答案] C
[解析] 因为f(1)=36,f(2)=108=3×36,f(3)=360=10×36,所以f(1),f(2),f(3)能被36整除,推测最大的m值为36.
9.已知数列{an}的前n项和Sn=n2an(n≥2),而a1=1,通过计算a2、a3、a4,猜想an=( )
A.
B.
C.
D.
[答案] B
[解析] 由Sn=n2an知Sn+1=(n+1)2an+1
∴Sn+1-Sn=(n+1)2an+1-n2an
∴an+1=(n+1)2an+1-n2an
∴an+1=an (n≥2).
当n=2时,S2=4a2,又S2=a1+a2,∴a2==
a3=a2=,a4=a3=.
由a1=1,a2=,a3=,a4=
猜想an=,故选B.
10.对于不等式≤n+1(n∈N+),某学生的证明过程如下:
(1)当n=1时,≤1+1,不等式成立.
(2)假设n=k(k∈N+)时,不等式成立,即
∴当n=k+1时,不等式成立,上述证法( )
A.过程全都正确
B.n=1验证不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
[答案] D
[解析] n=1的验证及归纳假设都正确,但从n=k到n=k+1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.
二、填空题
11.用数学归纳法证明“2n+1≥n2+n+2(n∈N*)”时,第一步的验证为________.
[答案] 当n=1时,左边=4,右边=4,左≥右,不等式成立
[解析] 当n=1时,左≥右,不等式成立,
∵n∈N*,∴第一步的验证为n=1的情形.
12.已知数列,,,…,,通过计算得S1=,S2=,S3=,由此可猜测Sn=________.
[答案]
[解析] 解法1:通过计算易得答案.
解法2:Sn=+++…+
=+++…+
=1-=.
13.对任意n∈N*,34n+2+a2n+1都能被14整除,则最小的自然数a=________.
[答案] 5
[解析] 当n=1时,36+a3能被14整除的数为a=3或5,当a=3时且n=3时,310+35不能被14整除,故a=5.
14.用数学归纳法证明命题:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2.
(1)当n0=________时,左边=____________,右边=______________________;当n=k时,等式左边共有________________项,第(k-1)项是__________________.
(2)假设n=k时命题成立,即_____________________________________成立.
(3)当n=k+1时,命题的形式是______________________________________;此时,左边增加的项为______________________.
[答案] (1)1;1×(3×1+1);1×(1+1)2;k;
(k-1)[3(k-1)+1]
(2)1×4+2×7+3×10+…+k(3k+1)=k(k+1)2
(3)1×4+2×7+…+(k+1)[3(k+1)+1]
=(k+1)[(k+1)+1]2;(k+1)[3(k+1)+1]
[解析] 由数学归纳法的法则易知.
三、解答题
15.求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).
[证明] ①n=1时,左边=12-22=-3,右边=-3,等式成立.
②假设n=k时,等式成立,即12-22+32-42+…+(2k-1)2-(2k)2=-k(2k+1)2.
当n=k+1时,12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-(2k+2)2=-k(2k+1)+(2k+1)2-(2k+2)2=-k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],所以n=k+1时,等式也成立.
由①②得,等式对任何n∈N*都成立.
16.求证:+++…+>(n≥2).
[证明] ①当n=2时,左=>0=右,
∴不等式成立.
②假设当n=k(k≥2,k∈N*)时,不等式成立.
即++…+>成立.
那么n=k+1时,++…+
++…+
>++…+>+++…+
=+=,
∴当n=k+1时,不等式成立.
据①②可知,不等式对一切n∈N*且n≥2时成立.
17.在平面内有n条直线,其中每两条直线相交于一点,并且每三条直线都不相交于同一点.
求证:这n条直线将它们所在的平面分成个区域.
[证明] (1)n=2时,两条直线相交把平面分成4个区域,命题成立.
(2)假设当n=k(k≥2)时,k条直线将平面分成块不同的区域,命题成立.
当n=k+1时,设其中的一条直线为l,其余k条直线将平面分成块区域,直线l与其余k条直线相交,得到k个不同的交点,这k个点将l分成k+1段,每段都将它所在的区域分成两部分,故新增区域k+1块.
从而k+1条直线将平面分成+k+1=块区域.
所以n=k+1时命题也成立.
由(1)(2)可知,原命题成立.
18.(2010·衡水高二检测)试比较2n+2与n2的大小(n∈N*),并用数学归纳法证明你的结论.
[分析] 由题目可获取以下主要信息:
①此题选用特殊值来找到2n+2与n2的大小关系;
②利用数学归纳法证明猜想的结论.
解答本题的关键是先利用特殊值猜想.
[解析] 当n=1时,21+2=4>n2=1,
当n=2时,22+2=6>n2=4,
当n=3时,23+2=10>n2=9,
当n=4时,24+2=18>n2=16,
由此可以猜想,
2n+2>n2(n∈N*)成立
下面用数学归纳法证明:
(1)当n=1时,
左边=21+2=4,右边=1,
所以左边>右边,
所以原不等式成立.
当n=2时,左边=22+2=6,
右边=22=4,所以左边>右边;
当n=3时,左边=23+2=10,右边=32=9,
所以左边>右边.
(2)假设n=k时(k≥3且k∈N*)时,不等式成立,
即2k+2>k2.那么n=k+1时,
2k+1+2=2·2k+2=2(2k+2)-2>2·k2-2.
又因:2k2-2-(k+1)2=k2-2k-3
=(k-3)(k+1)≥0,
即2k2-2≥(k+1)2,故2k+1+2>(k+1)2成立.
根据(1)和(2),原不等式对于任何n∈N*都成立.选修2-2 1.2 第1课时 几个常用的函数的导数
一、选择题
1.下列结论不正确的是( )
A.若y=0,则y′=0
B.若y=5x,则y′=5
C.若y=x-1,则y′=-x-2
[答案] D
2.若函数f(x)=,则f′(1)等于( )
A.0 B.-
C.2 D.
[答案] D
[解析] f′(x)=()′=,
所以f′(1)==,故应选D.
3.抛物线y=x2在点(2,1)处的切线方程是( )
A.x-y-1=0 B.x+y-3=0
C.x-y+1=0 D.x+y-1=0
[答案] A
[解析] ∵f(x)=x2,
∴f′(2)=li =li =1.
∴切线方程为y-1=x-2.即x-y-1=0.
4.已知f(x)=x3,则f′(2)=( )
A.0 B.3x2
C.8 D.12
[答案] D
[解析] f′(2)=
= = (6Δx+12)=12,故选D.
5.已知f(x)=xα,若f′(-1)=-2,则α的值等于( )
A.2 B.-2
C.3 D.-3
[答案] A
[解析] 若α=2,则f(x)=x2,
∴f′(x)=2x,∴f′(-1)=2×(-1)=-2适合条件.故应选A.
6.函数y=(x+1)2(x-1)在x=1处的导数等于( )
A.1 B.2
C.3 D.4
[答案] D
[解析] ∵y=x3+x2-x-1
∴=
=4+4Δx+(Δx)2,
∴y′|x=1=li =li[4+4·Δx+(Δx)2]=4.
故应选D.
7.曲线y=x2在点P处切线斜率为k,当k=2时的P点坐标为( )
A.(-2,-8) B.(-1,-1)
C.(1,1) D.
[答案] C
[解析] 设点P的坐标为(x0,y0),
∵y=x2,∴y′=2x.∴k==2x0=2,
∴x0=1,∴y0=x=1,即P(1,1),故应选C.
8.已知f(x)=f′(1)x2,则f′(0)等于( )
A.0 B.1
C.2 D.3
[答案] A
[解析] ∵f(x)=f′(1)x2,∴f′(x)=2f′(1)x,∴f′(0)=2f′(1)×0=0.故应选A.
9.曲线y=上的点P(0,0)的切线方程为( )
A.y=-x B.x=0
C.y=0 D.不存在
[答案] B
[解析] ∵y=
∴Δy=-
=
=
∴=
∴曲线在P(0,0)处切线的斜率不存在,
∴切线方程为x=0.
10.质点作直线运动的方程是s=,则质点在t=3时的速度是( )
A. B.
C. D.
[答案] A
[解析] Δs=-=
=
=
∴li ==,
∴s′(3)= .故应选A.
二、填空题
11.若y=x表示路程关于时间的函数,则y′=1可以解释为________.
[答案] 某物体做瞬时速度为1的匀速运动
[解析] 由导数的物理意义可知:y′=1可以表示某物体做瞬时速度为1的匀速运动.
12.若曲线y=x2的某一切线与直线y=4x+6平行,则切点坐标是________.
[答案] (2,4)
[解析] 设切点坐标为(x0,x),
因为y′=2x,所以切线的斜率k=2x0,又切线与y=4x+6平行,所以2x0=4,解得x0=2,故切点为(2,4).
13.过抛物线y=x2上点A的切线的斜率为______________.
[答案]
[解析] ∵y=x2,∴y′=x
∴k=×2=.
14.(2010·江苏,8)函数y=x2(x>0)的图像在点(ak,a)处的切线与x轴的交点的横坐标为ak+1,其中k∈N*,若a1=16,则a1+a3+a5的值是________.
[答案] 21
[解析] ∵y′=2x,∴过点(ak,a)的切线方程为y-a=2ak(x-ak),又该切线与x轴的交点为(ak+1,0),所以ak+1=ak,即数列{ak}是等比数列,首项a1=16,其公比q=,∴a3=4,a5=1,∴a1+a3+a5=21.
三、解答题
15.过点P(-2,0)作曲线y=的切线,求切线方程.
[解析] 因为点P不在曲线y=上,
故设切点为Q(x0,),∵y′=,
∴过点Q的切线斜率为:=,∴x0=2,
∴切线方程为:y-=(x-2),
即:x-2y+2=0.
16.质点的运动方程为s=,求质点在第几秒的速度为-.
[解析] ∵s=,
∴Δs=-
==
∴li ==-.∴-=-,∴t=4.
即质点在第4秒的速度为-.
17.已知曲线y=.
(1)求曲线在点P(1,1)处的切线方程;
(2)求曲线过点Q(1,0)处的切线方程;
(3)求满足斜率为-的曲线的切线方程.
[解析] ∵y=,∴y′=-.
(1)显然P(1,1)是曲线上的点.所以P为切点,所求切线斜率为函数y=在P(1,1)点导数.
即k=f′(1)=-1.
所以曲线在P(1,1)处的切线方程为
y-1=-(x-1),即为y=-x+2.
(2)显然Q(1,0)不在曲线y=上.
则可设过该点的切线的切点为A,
那么该切线斜率为k=f′(a)=.
则切线方程为y-=-(x-a).①
将Q(1,0)坐标代入方程:0-=(1-a).
解得a=,代回方程①整理可得:
切线方程为y=-4x+4.
(3)设切点坐标为A,则切线斜率为k=-=-,解得a=±,那么A,A′.代入点斜式方程得y-=-(x-)或y+=-(x+).整理得切线方程为y=-x+或y=-x-.
18.求曲线y=与y=x2在它们交点处的两条切线与x轴所围成的三角形的面积.
[解析] 两曲线方程联立得解得.
∴y′=-,∴k1=-1,k2=2x|x=1=2,
∴两切线方程为x+y-2=0,2x-y-1=0,所围成的图形如上图所示.
∴S=×1×=.选修2-2 1.3.1 函数的单调性与导数
一、选择题
1.设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是( )
A.b2-4ac>0 B.b>0,c>0
C.b=0,c>0 D.b2-3ac<0
[答案] D
[解析] ∵a>0,f(x)为增函数,
∴f′(x)=3ax2+2bx+c>0恒成立,
∴Δ=(2b)2-4×3a×c=4b2-12ac<0,∴b2-3ac<0.
2.(2009·广东文,8)函数f(x)=(x-3)ex的单调递增区间是( )
A.(-∞,2) B.(0,3)
C.(1,4) D.(2,+∞)
[答案] D
[解析] 考查导数的简单应用.
f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,
令f′(x)>0,解得x>2,故选D.
3.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,则该函数的单调递减区间为( )
A.[-1,+∞) B.(-∞,2]
C.(-∞,-1)和(1,2) D.[2,+∞)
[答案] B
[解析] 令k≤0得x0≤2,由导数的几何意义可知,函数的单调减区间为(-∞,2].
4.已知函数y=xf′(x)的图象如图(1)所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是( )
[答案] C
[解析] 当0
∴f′(x)<0,故y=f(x)在(0,1)上为减函数
当x>1时xf′(x)>0,∴f′(x)>0,故y=f(x)在(1,+∞)上为增函数,因此否定A、B、D故选C.
5.函数y=xsinx+cosx,x∈(-π,π)的单调增区间是( )
A.和
B.和
C.和
D.和
[答案] A
[解析] y′=xcosx,当-π
cosx<0,∴y′=xcosx>0,
当0
0,∴y′=xcosx>0.
6.下列命题成立的是( )
A.若f(x)在(a,b)内是增函数,则对任何x∈(a,b),都有f′(x)>0
B.若在(a,b)内对任何x都有f′(x)>0,则f(x)在(a,b)上是增函数
C.若f(x)在(a,b)内是单调函数,则f′(x)必存在
D.若f′(x)在(a,b)上都存在,则f(x)必为单调函数
[答案] B
[解析] 若f(x)在(a,b)内是增函数,则f′(x)≥0,故A错;f(x)在(a,b)内是单调函数与f′(x)是否存在无必然联系,故C错;f(x)=2在(a,b)上的导数为f′(x)=0存在,但f(x)无单调性,故D错.
7.(2007·福建理,11)已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时( )
A.f′(x)>0,g′(x)>0 B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0 D.f′(x)<0,g′(x)<0
[答案] B
[解析] f(x)为奇函数,g(x)为偶函数,奇(偶)函数在关于原点对称的两个区间上单调性相同(反),∴x<0时,f′(x)>0,g′(x)<0.
8.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意正数a、b,若a
A.af(a)≤f(b) B.bf(b)≤f(a)
C.af(b)≤bf(a) D.bf(a)≤af(b)
[答案] C
[解析] ∵xf′(x)+f(x)≤0,且x>0,f(x)≥0,
∴f′(x)≤-,即f(x)在(0,+∞)上是减函数,
又0<a<b,∴af(b)≤bf(a).
9.对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有( )
A.f(0)+f(2)<2f(1) B.f(0)+f(2)≤2f(1)
C.f(0)+f(2)≥2f(1) D.f(0)+f(2)>2f(1)
[答案] C
[解析] 由(x-1)f′(x)≥0得f(x)在[1,+∞)上单调递增,在(-∞,1]上单调递减或f(x)恒为常数,
故f(0)+f(2)≥2f(1).故应选C.
10.(2010·江西理,12)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S′(t)的图像大致为
( )
[答案] A
[解析] 由图象知,五角星露出水面的面积的变化率是增→减→增→减,其中恰露出一个角时变化不连续,故选A.
二、填空题
11.已知y=x3+bx2+(b+2)x+3在R上不是单调增函数,则b的范围为________.
[答案] b<-1或b>2
[解析] 若y′=x2+2bx+b+2≥0恒成立,则Δ=4b2-4(b+2)≤0,∴-1≤b≤2,
由题意b<-1或b>2.
12.已知函数f(x)=ax-lnx,若f(x)>1在区间(1,+∞)内恒成立,实数a的取值范围为________.
[答案] a≥1
[解析] 由已知a>在区间(1,+∞)内恒成立.
设g(x)=,则g′(x)=-<0 (x>1),
∴g(x)=在区间(1,+∞)内单调递减,
∴g(x)<g(1),
∵g(1)=1,
∴<1在区间(1,+∞)内恒成立,
∴a≥1.
13.函数y=ln(x2-x-2)的单调递减区间为__________.
[答案] (-∞,-1)
[解析] 函数y=ln(x2-x-2)的定义域为(2,+∞)∪(-∞,-1),
令f(x)=x2-x-2,f′(x)=2x-1<0,得x<,
∴函数y=ln(x2-x-2)的单调减区间为(-∞,-1).
14.若函数y=x3-ax2+4在(0,2)内单调递减,则实数a的取值范围是____________.
[答案] [3,+∞)
[解析] y′=3x2-2ax,由题意知3x2-2ax<0在区间(0,2)内恒成立,
即a>x在区间(0,2)上恒成立,∴a≥3.
三、解答题
15.设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(1)求a、b的值;
(2)讨论函数f(x)的单调性.
[解析] (1)求导得f′(x)=3x2-6ax+3b.
由于f(x)的图象与直线12x+y-1=0相切于点(1,-11),所以f(1)=-11,f′(1)=-12,
即,
解得a=1,b=-3.
(2)由a=1,b=-3得
f′(x)=3x2-6ax+3b=3(x2-2x-3)
=3(x+1)(x-3).
令f′(x)>0,解得x<-1或x>3;又令f′(x)<0,解得-1
所以当x∈(-∞,-1)时,f(x)是增函数;
当x∈(3,+∞)时,f(x)也是增函数;
当x∈(-1,3)时,f(x)是减函数.
16.求证:方程x-sinx=0只有一个根x=0.
[证明] 设f(x)=x-sinx,x∈(-∞,+∞),
则f′(x)=1-cosx>0,
∴f(x)在(-∞,+∞)上是单调递增函数.
而当x=0时,f(x)=0,
∴方程x-sinx=0有唯一的根x=0.
17.已知函数y=ax与y=-在(0,+∞)上都是减函数,试确定函数y=ax3+bx2+5的单调区间.
[分析] 可先由函数y=ax与y=-的单调性确定a、b的取值范围,再根据a、b的取值范围去确定y=ax3+bx2+5的单调区间.
[解析] ∵函数y=ax与y=-在(0,+∞)上都是减函数,∴a<0,b<0.
由y=ax3+bx2+5得y′=3ax2+2bx.
令y′>0,得3ax2+2bx>0,∴-<x<0.
∴当x∈时,函数为增函数.
令y′<0,即3ax2+2bx<0,
∴x<-,或x>0.
∴在,(0,+∞)上时,函数为减函数.
18.(2010·新课标全国文,21)设函数f(x)=x(ex-1)-ax2.
(1)若a=,求f(x)的单调区间;
(2)若当x≥0时f(x)≥0,求a的取值范围.
[解析] (1)a=时,f(x)=x(ex-1)-x2,
f′(x)=ex-1+xex-x=(ex-1)(x+1).
当x∈(-∞,-1)时,f′(x)>0;当x∈(-1,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.
故f(x)在(-∞,-1],[0,+∞)上单调递增,在[-1,0]上单调递减.
(2)f(x)=x(ex-1-ax).
令g(x)=ex-1-ax,则g′(x)=ex-a.
若a≤1,则当x∈(0,+∞)时,g′(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.
当a>1,则当x∈(0,lna)时,g′(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时g(x)<0,即f(x)<0.
综合得a的取值范围为(-∞,1].选修2-2 3.2.1 复数代数形式的加减运算及其几何意义
一、选择题
1.已知z1=a+bi,z2=c+di,若z1-z2是纯虚数,则有( )
A.a-c=0且b-d≠0
B.a-c=0且b+d≠0
C.a+c=0且b-d≠0
D.a+c=0且b+d≠0
[答案] A
[解析] z1-z2=(a+bi)-(c+di)
=(a-c)+(b-d)i,
∵z1-z2是纯虚数,
∴a-c=0且b-d≠0.
故应选A.
2.[(a-b)-(a+b)i]-[(a+b)-(a-b)i]等于( )
A.-2b-2bi
B.-2b+2bi
C.-2a-2bi
D.-2a-2ai
[答案] A
[解析] 原式=[(a-b)-(a+b)]+[-(a+b)+(a-b)]i=-2b-2bi.
3.如果一个复数与它的模的和为5+i,那么这个复数是( )
A.
B.i
C.+i
D.+2i
[答案] C
[解析] 设这个复数为a+bi(a,b∈R),
则|a+bi|=.
由题意知a+bi+=5+i
即a++bi=5+i
∴,解得a=,b=.
∴所求复数为+i.故应选C.
4.已知复数z1=3+2i,z2=1-3i,则复数z=z1-z2在复平面内对应的点Z位于复平面内的( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
[答案] A
[解析] ∵z1=3+2i,z2=1-3i,
∴z=z1-z2=3+2i-(1-3i)=(3-1)+(2+3)i=2+5i.
∴点Z位于复平面内的第一象限.故应选A.
5. ABCD中,点A,B,C分别对应复数4+i,3+4i,3-5i,则点D对应的复数是( )
A.2-3i
B.4+8i
C.4-8i
D.1+4i
[答案] C
[解析] 对应的复数为(3+4i)-(4+i)=(3-4)+(4-1)i=-1+3i,
设点D对应的复数为z,则对应的复数为(3-5i)-z.
由平行四边形法则知=,
∴-1+3i=(3-5i)-z,
∴z=(3-5i)-(-1+3i)=(3+1)+(-5-3)i=4-8i.故应选C.
6.已知z1=m2-3m+m2i,z2=4+(5m+6)i,其中m为实数,若z1-z2=0,则m的值为( )
A.4
B.-1
C.6
D.0
[答案] B
[解析] z1-z2=(m2-3m+m2i)-[4+(5m+6)i]
=(m2-3m-4)+(m2-5m-6)i=0
∴解得m=-1,故应选B.
7.已知|z|=3,且z+3i是纯虚数,则z=( )
A.-3i
B.3i
C.±3i
D.4i
[答案] B
[解析] 令z=a+bi(a,b∈R),则a2+b2=9 ①
又z+3i=a+(3+b)i是纯虚数
∴ ②
由①②得a=0,b=3,
∴z=3i,故应选B.
8.已知z1,z2∈C且|z1|=1,若z1+z2=2i,则|z1-z2|的最大值是( )
A.6
B.5
C.4
D.3
[答案] C
[解析] 设z1=a+bi(a,b∈R,a2+b2=1)
z2=c+di(c,d∈R)
∵z1+z2=2i
∴(a+c)+(b+d)i=2i
∴∴,
∴|z1-z2|=|(a-c)+(b-d)i|=|2a+(2b-2)i|
==2
=2=2.
∵a2+b2=1,∴-1≤b≤1
∴0≤2-2b≤4,∴|z1-z2|≤4.
9.复数z=x+yi(x,y∈R)满足|z-4i|=|z+2|,则2x+4y的最小值为( )
A.2
B.4
C.4
D.8
[答案] C
[解析] ∵|z-4i|=|z+2|,且z=x+yi
∴|x+(y-4)i|=|x+2+yi|
∴x2+(y-4)2=(x+2)2+y2
∴x=-2y+3,
∴2x+4y=2-2y+3+4y=8·+4y≥4.
10.若x∈C,则方程|x|=1+3i-x的解是( )
A.+i
B.x1=4,x2=-1
C.-4+3i
D.+i
[答案] C
[解析] 令x=a+bi(a,b∈R)
则=1+3i-a-bi
所以,解得
故原方程的解为-4+3i,故应选C.
二、填空题
11.若z1=x1+y1i,z2=x2+y2i(x1,x2,y1,y2∈R),则|z2-z1|=______________.
[答案]
[解析] ∵z1=x1+y1i,z2=x2+y2i,
∴z2-z1=(x2-x1)+(y2-y1)i,
∴|z2-z1|=.
12.已知z1=a+(a+1)i,z2=-3b+(b+2)i(a,b∈R),若z1-z2=4,则a+b=________.
[答案] 3
[解析] z1-z2=a+(a+1)i-[-3b+(b+2)i]=+[(a+1)-(b+2)i]
=+(a-b-1)i=4,
∴,解之得,
∴a+b=3.
13.计算:(2+7i)-|-3+4i|+|5-12i|i+3-4i=______.
[答案] 16i
[解析] 原式=2+7i-5+13i+3-4i
=(2-5+3)+(7+13-4)i=16i.
14.复平面内三点A、B、C,A点对应的复数为2+i,对应的复数为1+2i,向量对应的复数为3-i,则点C对应的复数为________.
[答案] 4-2i
[解析] ∵对应的复数是1+2i,
对应的复数为3-i,
∴对应的复数为(3-i)-(1+2i)=2-3i.
又=+,
∴C对应的复数为(2+i)+(2-3i)=4-2i.
三、解答题
15.计算:(5-6i)+(-2-i)-(3+4i).
[解析] 解法1:(5-6i)+(-2-i)-(3+4i)
=[(5-2)+(-6-1)i]-(3+4i)
=(3-7i)-(3+4i)
=(3-3)+(-7-4)i=-11i.
解法2:(5-6i)+(-2-i)-(3+4i)
=(5-2-3)+[-6+(-1-4)]i
=0+(-11)i=-11i.
16.已知复数z1=2+3i,z2=a-2+i,若|z1-z2|<|z1|,求实数a的取值范围.
[解析] z1-z2=2+3i-[(a-2)+i]=[2-(a-2)]+(3-1)i=(4-a)+2i
由|z1-z2|<|z1|得
∴<,∴(4-a)2<9,∴1
∴a的取值范围为(1,7).
17.已知z1=cosα+isinα,z2=cosβ-isinβ且z1-z2=+i,求cos(α+β)的值.
[解析] ∵z1=cosα+isinα,z2=cosβ-isinβ
∴z1-z2=(cosα-cosβ)+i(sinα+sinβ)=+i
∴
①2+②2得2-2cos(α+β)=1
即cos(α+β)=.
18.(1)若f(z)=z+1-i,z1=3+4i,z2=-2+i,求f(z1-z2);
(2)z1=2cosθ-i,z2=-+2isinθ(0≤θ≤2π),且z1+z2对应的点位于复平面的第二象限,求θ的范围.
[解析] (1)z1-z2=3+4i-(-2+i)=5+3i,
f(z1-z2)=(z1-z2)+(1-i)=5+3i+1-i=6+2i.
(2)z1+z2=(2cosθ-i)+(-+2isinθ)=(2cosθ-)+(2sinθ-1)i,
由题意得:,即
又θ∈[0,2π],故θ∈.选修2-2 1.3.3 函数的最值与导数
一、选择题
1.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x)( )
A.等于0 B.大于0
C.小于0 D.以上都有可能
[答案] A
[解析] ∵M=m,∴y=f(x)是常数函数
∴f′(x)=0,故应选A.
2.设f(x)=x4+x3+x2在[-1,1]上的最小值为( )
A.0 B.-2
C.-1 D.
[答案] A
[解析] y′=x3+x2+x=x(x2+x+1)
令y′=0,解得x=0.
∴f(-1)=,f(0)=0,f(1)=
∴f(x)在[-1,1]上最小值为0.故应选A.
3.函数y=x3+x2-x+1在区间[-2,1]上的最小值为( )
A. B.2
C.-1 D.-4
[答案] C
[解析] y′=3x2+2x-1=(3x-1)(x+1)
令y′=0解得x=或x=-1
当x=-2时,y=-1;当x=-1时,y=2;
当x=时,y=;当x=1时,y=2.
所以函数的最小值为-1,故应选C.
4.函数f(x)=x2-x+1在区间[-3,0]上的最值为( )
A.最大值为13,最小值为
B.最大值为1,最小值为4
C.最大值为13,最小值为1
D.最大值为-1,最小值为-7
[答案] A
[解析] ∵y=x2-x+1,∴y′=2x-1,
令y′=0,∴x=,f(-3)=13,f=,f(0)=1.
5.函数y=+在(0,1)上的最大值为( )
A. B.1
C.0 D.不存在
[答案] A
[解析] y′=-=·
由y′=0得x=,在上y′>0,在上
y′<0.∴x=时y极大=,
又x∈(0,1),∴ymax=.
6.函数f(x)=x4-4x (|x|<1)( )
A.有最大值,无最小值
B.有最大值,也有最小值
C.无最大值,有最小值
D.既无最大值,也无最小值
[答案] D
[解析] f′(x)=4x3-4=4(x-1)(x2+x+1).
令f′(x)=0,得x=1.又x∈(-1,1)
∴该方程无解,
故函数f(x)在(-1,1)上既无极值也无最值.故选D.
7.函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是( )
A.5,-15 B.5,4
C.-4,-15 D.5,-16
[答案] A
[解析] y′=6x2-6x-12=6(x-2)(x+1),
令y′=0,得x=2或x=-1(舍).
∵f(0)=5,f(2)=-15,f(3)=-4,
∴ymax=5,ymin=-15,故选A.
8.已知函数y=-x2-2x+3在[a,2]上的最大值为,则a等于( )
A.- B.
C.- D.或-
[答案] C
[解析] y′=-2x-2,令y′=0得x=-1.
当a≤-1时,最大值为f(-1)=4,不合题意.
当-1
最大值为f(a)=-a2-2a+3=,
解得a=-或a=-(舍去).
9.若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是
( )
A.k≤-3或-1≤k≤1或k≥3
B.-3
C.-2
D.不存在这样的实数
[答案] B
[解析] 因为y′=3x2-12,由y′>0得函数的增区间是(-∞,-2)和(2,+∞),由y′<0,得函数的减区间是(-2,2),由于函数在(k-1,k+1)上不是单调函数,所以有k-1<-2
10.函数f(x)=x3+ax-2在区间[1,+∞)上是增函数,则实数a的取值范围是( )
A.[3,+∞) B.[-3,+∞)
C.(-3,+∞) D.(-∞,-3)
[答案] B
[解析] ∵f(x)=x3+ax-2在[1,+∞)上是增函数,∴f′(x)=3x2+a≥0在[1,+∞)上恒成立
即a≥-3x2在[1,+∞)上恒成立
又∵在[1,+∞)上(-3x2)max=-3
∴a≥-3,故应选B.
二、填空题
11.函数y=x+(1-x),0≤x≤1的最小值为______.
[答案]
由y′>0得x>,由y′<0得x<.
此函数在上为减函数,在上为增函数,∴最小值在x=时取得,ymin=.
12.函数f(x)=5-36x+3x2+4x3在区间[-2,+∞)上的最大值________,最小值为________.
[答案] 不存在;-28
[解析] f′(x)=-36+6x+12x2,
令f′(x)=0得x1=-2,x2=;当x>时,函数为增函数,当-2≤x≤时,函数为减函数,所以无最大值,又因为f(-2)=57,f=-28,所以最小值为-28.
13.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为________.
[答案] -1
[解析] f′(x)==
令f′(x)=0,解得x=或x=-(舍去)
当x>时,f′(x)<0;当0
0;
当x=时,f(x)==,=<1,不合题意.
∴f(x)max=f(1)==,解得a=-1.
14.f(x)=x3-12x+8在[-3,3]上的最大值为M,最小值为m,则M-m=________.
[答案] 32
[解析] f′(x)=3x2-12
由f′(x)>0得x>2或x<-2,
由f′(x)<0得-2
∴f(x)在[-3,-2]上单调递增,在[-2,2]上单调递减,在[2,3]上单调递增.
又f(-3)=17,f(-2)=24,f(2)=-8,
f(3)=-1,
∴最大值M=24,最小值m=-8,
∴M-m=32.
三、解答题
15.求下列函数的最值:
(1)f(x)=sin2x-x;
(2)f(x)=x+.
[解析] (1)f′(x)=2cos2x-1.
令f′(x)=0,得cos2x=.
又x∈,∴2x∈[-π,π],
∴2x=±,∴x=±.
∴函数f(x)在上的两个极值分别为
f=-,f=-+.
又f(x)在区间端点的取值为
f=-,f=.
比较以上函数值可得f(x)max=,f(x)min=-.
(2)∵函数f(x)有意义,
∴必须满足1-x2≥0,即-1≤x≤1,
∴函数f(x)的定义域为[-1,1].
f′(x)=1+(1-x2)-·(1-x2)′=1- .
令f′(x)=0,得x= .
∴f(x)在[-1,1]上的极值为
f=+=.
又f(x)在区间端点的函数值为f(1)=1,f(-1)=-1,比较以上函数值可得f(x)max=,f(x)min=-1.
16.设函数f(x)=ln(2x+3)+x2.求f(x)在区间上的最大值和最小值.
[解析] f(x)的定义域为.
f′(x)=2x+=
=.
当-
0;
当-1
当x>-时,f′(x)>0,
所以f(x)在上的最小值为
f=ln2+.
又f-f=ln+-ln-=ln+=<0,
所以f(x)在区间上的最大值为 f=ln+.
17.(2010·安徽理,17)设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
[分析] 本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力.
解题思路是:(1)利用导数的符号判定函数的单调性,进而求出函数的极值.(2)将不等式转化构造函数,再利用函数的单调性证明.
[解析] (1)解:由f(x)=ex-2x+2a,x∈R知f′(x)=ex-2,x∈R.
令f′(x)=0,得x=ln2.于是当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,ln2) ln2 (ln2,+∞)
f′(x) - 0 +
f(x) 单调递减? 2(1-ln2+a) 单调递增?
故f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞),
f(x)在x=ln2处取得极小值,极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a).
(2)证明:设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.
由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.
于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.
于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex-x2+2ax-1>0,故ex>x2-2ax+1.
18.已知函数f(x)=,x∈[0,1].
(1)求f(x)的单调区间和值域;
(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1].若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
[解析] (1)对函数f(x)求导,得
f′(x)==-
令f′(x)=0解得x=或x=.
当x变化时,f′(x),f(x)的变化情况如下表:
x 0 (0,) (,1) 1
f′(x) - 0 +
f(x) - ? -4 ? -3
所以,当x∈(0,)时,f(x)是减函数;
当x∈时,f(x)是增函数.
当x∈[0,1]时,f(x)的值域为[-4,-3].
(2)g′(x)=3(x2-a2).
因为a≥1,当x∈(0,1)时,g′(x)<0.
因此当x∈(0,1)时,g(x)为减函数,从而当x∈[0,1]时有g(x)∈[g(1),g(0)].
又g(1)=1-2a-3a2,g(0)=-2a,即x∈[0,1]时有g(x)∈[1-2a-3a2,-2a].
任给x1∈[0,1],f(x1)∈[-4,-3],存在x0∈[0,1]使得g(x0)=f(x1)成立,
则[1-2a-3a2,-2a] [-4,-3].
即
解①式得a≥1或a≤-;解②式得a≤.
又a≥1,故a的取值范围为1≤a≤.选修2-2 3.2.2 复数代数形式的乘除运算
一、选择题
1.(2010·安徽理,1)i是虚数单位,=( )
A.-i
B.+i
C.+i
D.-i
[答案] B
[解析] =
==+i,故选B.
2.在复平面内,复数z=i(1+2i)对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
[答案] B
[解析] 考查复数的运算.
z=-2+i,对应点位于第二象限,
∴选B.
3.已知z是纯虚数,是实数,那么z等于( )
A.2i
B.i
C.-i
D.-2i
[答案] D
[解析] 本小题主要考查复数的运算.
设z=bi(b∈R),则==+i,
∴=0,∴b=-2,
∴z=-2i,故选D.
4.i是虚数单位,若=a+bi(a,b∈R),则乘积ab的值是( )
A.-15
B.-3
C.3
D.15
[答案] B
[解析] 本题考查复数的概念及其简单运算.
===-1+3i=a+bi,
∴a=-1,b=3,∴ab=-3.
5.设z是复数,a(z)表示满足zn=1的最小正整数n,则对虚数单位i,a(i)=( )
A.8
B.6
C.4
D.2
[答案] C
[解析] 考查阅读理解能力和复数的概念与运算.
∵a(z)表示使zn=1的最小正整数n.
又使in=1成立的最小正整数n=4,∴a(i)=4.
6.已知复数z的实部为-1,虚部为2,则=( )
A.2-i
B.2+i
C.-2-i
D.-2+i
[答案] A
[解析] 考查复数的运算.
z=-1+2i,则=
==2-i.
7.设a,b∈R且b≠0,若复数(a+bi)3是实数,则( )
A.b2=3a2
B.a2=3b2
C.b2=9a2
D.a2=9b2
[答案] A
[解析] 本小题主要考查复数的运算.
(a+bi)3=a3+3a2bi-3ab2-b3i
=a3-3ab2+(3a2b-b3)i,
∴3a2b-b3=0,∴3a2=b2,故选A.
8.设z的共轭复数是,若z+=4,z·=8,则等于( )
A.i
B.-i
C.±1
D.±i
[答案] D
[解析] 本题主要考查复数的运算.
设z=a+bi(a,b∈R),则=a-bi,
由z+=4,z =8得∴
∴z=2+2i,=2-2i或z=2-2i,=2+2i,==-i或==i.∴=±i,故选D.
9.(2010·新课标全国理,2)已知复数z=,是z的共轭复数,则z·=( )
A.
B.
C.1
D.2
[答案] A
[解析] ∵z===
==
===,∴=,
∴z·=|z|2=,故选A.
10.定义运算=ad-bc,则符合条件=4+2i的复数z为( )
A.3-i
B.1+3i
C.3+i
D.1-3i
[答案] A
[解析] 由定义得=zi+z=z(1+i)=4+2i
∴z==3-i.
故应选A.
二、填空题
11.表示为a+bi(a,b∈R),则a+b=________.
[答案] 1
[解析] 本小题考查复数的除法运算.
∵==i,∴a=0,b=1.
因此a+b=1.
12.若复数z满足z=i(2-z)(i是虚数单位),则z=________.
[答案] 1+i
[解析] 本题主要考查复数的运算.
∵z=i(2-z),∴z==1+i.
13.关于x的不等式mx2-nx+p>0(m、n、p∈R)的解集为(-1,2),则复数m+pi所对应的点位于原复平面内的第________象限.
[答案] 二
[解析] ∵mx2-nx+p>0(m、n、p∈R)的解集为(-1,2),∴,即m<0,p>0.
故复数m+pi所对应的点位于复平面内的第二象限.
14.若z1=a+2i,z2=3-4i,且为纯虚数,则实数a的值为________.
[答案]
[解析] 设=bi(b∈R且b≠0),∴z1=bi(z2),即a+2i=bi(3-4i)=4b+3bi.∴ a=.
三、解答题
15.计算:
(1)+2000+;
(2)1+in+i2n+…+i2000n(n∈N).
[解析] (1)原式=+(-i)100+
=i+1++i=+i.
(2)当n=4k(k∈N)时,原式=1+1+…+1=2001.
当n≠4k(k∈N)时,
原式====1.
16.已知复数z=,ω=z+ai(a∈R),当≤时,求a的取值范围.
[解析] z=
====1-i
∵ω=z+ai=1-i+ai=1+(a-1)i
∴===
∴=≤
∴a2-2a-2≤0,∴1-≤a≤1+
故a的取值范围是[1-,1+].
17.已知1+i是方程x2+bx+c=0的一个根(b,c∈R).
(1)求b,c的值;
(2)试证明1-i也是方程的根.
[解析] (1)∵1+i是方程x2+bx+c=0的根
∴(1+i)2+b(1+i)+c=0
即b+c+(2+b)i=0
∴解得.
(2)由(1)知方程为x2-2x+2=0
把1-i代入方程左边得
左边=(1-i)2-2(1-i)+2=0=右边,即方程成立
∴1-i也是方程的根.
18.已知ω=z+i(z∈C),是纯虚数,又|ω+1|2+|ω-1|2=16,求ω.
[解析] 设z=a+bi(a,b∈R)
∴==
由是纯虚数得 ①
∴|ω+1|2+|ω-1|2=|z+i+1|2+|z+i-1|2
=|a+bi+i+1|2+|a+bi+i-1|2
=|(a+1)+(b+1)i|2+|(a-1)2+(b+1)i|2
=(a+1)2+(b+1)2+(a-1)2+(b+1)2
=2(a2+b2)+4+4b=8+4+4b=12+4b=16,
∴b=1,
将b=1代入①得a=±.
∴z=±+i,ω=±+2i.选修2-2 1.3.2 函数的极值与导数
一、选择题
1.已知函数f(x)在点x0处连续,下列命题中,正确的是( )
A.导数为零的点一定是极值点
B.如果在点x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极小值
C.如果在点x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值
D.如果在点x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极大值
[答案] C
[解析] 导数为0的点不一定是极值点,例如f(x)=x3,f′(x)=3x2,f′(0)=0,但x=0不是f(x)的极值点,故A错;由极值的定义可知C正确,故应选C.
2.函数y=1+3x-x3有( )
A.极小值-2,极大值2
B.极小值-2,极大值3
C.极小值-1,极大值1
D.极小值-1,极大值3
[答案] D
[解析] y′=3-3x2=3(1-x)(1+x)
令y′=0,解得x1=-1,x2=1
当x<-1时,y′<0,函数y=1+3x-x3是减函数,
当-1
0,函数y=1+3x-x3是增函数,
当x>1时,y′<0,函数y=1+3x-x3是减函数,
∴当x=-1时,函数有极小值,y极小=-1.
当x=1时,函数有极大值,y极大=3.
3.设x0为f(x)的极值点,则下列说法正确的是( )
A.必有f′(x0)=0
B.f′(x0)不存在
C.f′(x0)=0或f′(x0)不存在
D.f′(x0)存在但可能不为0
[答案] C
[解析] 如:y=|x|,在x=0时取得极小值,但f′(0)不存在.
4.对于可导函数,有一点两侧的导数值异号是这一点为极值的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
[答案] C
[解析] 只有这一点导数值为0,且两侧导数值异号才是充要条件.
5.对于函数f(x)=x3-3x2,给出命题:
①f(x)是增函数,无极值;
②f(x)是减函数,无极值;
③f(x)的递增区间为(-∞,0),(2,+∞),递减区间为(0,2);
④f(0)=0是极大值,f(2)=-4是极小值.
其中正确的命题有( )
A.1个 B.2个
C.3个 D.4个
[答案] B
[解析] f′(x)=3x2-6x=3x(x-2),令f′(x)>0,得x>2或x<0,令f′(x)<0,得0
6.函数f(x)=x+的极值情况是( )
A.当x=1时,极小值为2,但无极大值
B.当x=-1时,极大值为-2,但无极小值
C.当x=-1时,极小值为-2;当x=1时,极大值为2
D.当x=-1时,极大值为-2;当x=1时,极小值为2
[答案] D
[解析] f′(x)=1-,令f′(x)=0,得x=±1,
函数f(x)在区间(-∞,-1)和(1,+∞)上单调递增,在(-1,0)和(0,1)上单调递减,
∴当x=-1时,取极大值-2,当x=1时,取极小值2.
7.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点( )
A.1个 B.2个
C.3个 D.4个
[答案] A
[解析] 由f′(x)的图象可知,函数f(x)在区间(a,b)内,先增,再减,再增,最后再减,故函数f(x)在区间(a,b)内只有一个极小值点.
8.已知函数y=x-ln(1+x2),则函数y的极值情况是( )
A.有极小值
B.有极大值
C.既有极大值又有极小值
D.无极值
[答案] D
[解析] ∵y′=1-(x2+1)′
=1-=
令y′=0得x=1,当x>1时,y′>0,
当x<1时,y′>0,
∴函数无极值,故应选D.
9.已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则函数f(x)的极值是( )
A.极大值为,极小值为0
B.极大值为0,极小值为
C.极大值为0,极小值为-
D.极大值为-,极小值为0
[答案] A
[解析] 由题意得,f(1)=0,∴p+q=1①
f′(1)=0,∴2p+q=3②
由①②得p=2,q=-1.
∴f(x)=x3-2x2+x,f′(x)=3x2-4x+1
=(3x-1)(x-1),
令f′(x)=0,得x=或x=1,极大值f=,极小值f(1)=0.
10.下列函数中,x=0是极值点的是( )
A.y=-x3 B.y=cos2x
C.y=tanx-x D.y=
[答案] B
[解析] y=cos2x=,y′=-sin2x,
x=0是y′=0的根且在x=0附近,y′左正右负,
∴x=0是函数的极大值点.
二、填空题
11.函数y=的极大值为______,极小值为______.
[答案] 1 -1
[解析] y′=,
令y′>0得-1
1或x<-1,
∴当x=-1时,取极小值-1,当x=1时,取极大值1.
12.函数y=x3-6x+a的极大值为____________,极小值为____________.
[答案] a+4 a-4
[解析] y′=3x2-6=3(x+)(x-),
令y′>0,得x>或x<-,
令y′<0,得-
∴当x=-时取极大值a+4,
当x=时取极小值a-4.
13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a=______,b=________.
[答案] -3 -9
[解析] y′=3x2+2ax+b,方程y′=0有根-1及3,由韦达定理应有
14.已知函数f(x)=x3-3x的图象与直线y=a有相异三个公共点,则a的取值范围是________.
[答案] (-2,2)
[解析] 令f′(x)=3x2-3=0得x=±1,
可得极大值为f(-1)=2,极小值为f(1)=-2,
y=f(x)的大致图象如图
观察图象得-2
三、解答题
15.已知函数f(x)=x3-3x2-9x+11.
(1)写出函数f(x)的递减区间;
(2)讨论函数f(x)的极大值或极小值,如有试写出极值.
[解析] f′(x)=3x2-6x-9=3(x+1)(x-3),
令f′(x)=0,得x1=-1,x2=3.
x变化时,f′(x)的符号变化情况及f(x)的增减性如下表所示:
x (-∞,-1) -1 (-1,3) 3 (3,+∞)
f′(x) + 0 - 0 +
f(x) 增 极大值f(-1) 减 极小值f(3) 增
(1)由表可得函数的递减区间为(-1,3);
(2)由表可得,当x=-1时,函数有极大值为f(-1)=16;当x=3时,函数有极小值为f(3)=-16.
16.设函数f(x)=ax3+bx2+cx,在x=1和x=-1处有极值,且f(1)=-1,求a、b、c的值,并求出相应的极值.
[解析] f′(x)=3ax2+2bx+c.
∵x=±1是函数的极值点,∴-1、1是方程f′(x)=0的根,即有
又f(1)=-1,则有a+b+c=-1,
此时函数的表达式为f(x)=x3-x.
∴f′(x)=x2-.
令f′(x)=0,得x=±1.
当x变化时,f′(x),f(x)变化情况如下表:
x (-∞,-1) -1 (-1,1) 1 (1,+∞)
f′(x) + 0 - 0 +
f(x) ? 极大值1 ? 极小值-1 ?
由上表可以看出,当x=-1时,函数有极大值1;当x=1时,函数有极小值-1.
17.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;
(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.
[解析] (1)f′(x)=3ax2+2bx-3,依题意,
f′(1)=f′(-1)=0,即
解得a=1,b=0.
∴f(x)=x3-3x,
f′(x)=3x2-3=3(x-1)(x+1).
令f′(x)=0,得x1=-1,x2=1.
若x∈(-∞,-1)∪(1,+∞),则f′(x)>0,故
f(x)在(-∞,-1)上是增函数,
f(x)在(1,+∞)上是增函数.
若x∈(-1,1),则f′(x)<0,故
f(x)在(-1,1)上是减函数.
∴f(-1)=2是极大值;f(1)=-2是极小值.
(2)曲线方程为y=x3-3x.点A(0,16)不在曲线上.
设切点为M(x0,y0),则点M的坐标满足y0=x-3x0.
∵f′(x0)=3(x-1),故切线的方程为
y-y0=3(x-1)(x-x0).
注意到点A(0,16)在切线上,有
16-(x-3x0)=3(x-1)(0-x0).
化简得x=-8,解得x0=-2.
∴切点为M(-2,-2),
切线方程为9x-y+16=0.
18.(2010·北京文,18)设函数f(x)=x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.
(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.
[解析] 本题考查了函数与导函数的综合应用.
由f(x)=x3+bx2+cx+d得f′(x)=ax2+2bx+c
∵f′(x)-9x=ax2+2bx+c-9x=0的两根为1,4.
(1)当a=3时,由(*)式得,
解得b=-3,c=12.
又∵曲线y=f(x)过原点,∴d=0.
故f(x)=x3-3x2+12x.
(2)由于a>0,所以“f(x)=x3+bx2+cx+d在(-∞,+∞)内无极值点”等价于“f ′(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立”
由(*)式得2b=9-5a,c=4a.
又∵Δ=(2b)2-4ac=9(a-1)(a-9)
解得a∈[1,9],
即a的取值范围[1,9].选修2-2 1.4 生活中的优化问题举例
一、选择题
1.内接于半径为R的球且体积最大的圆锥的高为( )
A.R B.2R
C.R D.R
[答案] C
[解析] 设圆锥高为h,底面半径为r,则R2=(R-h)2+r2,∴r2=2Rh-h2
∴V=πr2h=h(2Rh-h2)=πRh2-h3
V′=πRh-πh2.令V′=0得h=R.
当0
0;当
因此当h=R时,圆锥体积最大.故应选C.
2.若底面为等边三角形的直棱柱的体积为V,则其表面积最小时,底面边长为( )
A. B.
C. D.2
[答案] C
[解析] 设底面边长为x,则V=x2h,∴h= .
∴S表=2×x2+3x·=x2+,
∴S′表=x-,令S′表=0得x=.
当0
时,S′>0.
因此当底边长为时,其表面积最小.
3.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R与产量x的关系式R(x)=则总利润最大时,每年生产的产品是( )
A.100 B.150
C.200 D.300
[答案] D
[解析] 由题意,总成本为C=20000+100x.
所以总利润为P=R-C
=
∴P′=
令P′=0,得x=300,
当0
0,当300
4.用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2?1,则该长方体的最大体积为( )
A.2m3 B.3m3
C.4m3 D.5m3
[答案] B
[解析] 设长方体的宽为x(m),则长为2x(m),高为h==4.5-3x(m)
故长方体的体积为
V(x)=2x2(4.5-3x)=9x2-6x3
从而V′(x)=18x-18x2=18x(1-x)
令V′(x)=0,解得x=1或x=0(舍去)
当0
0;当1
故在x=1处V(x)取得极大值,并且这个极值就是V(x)的最大值
从而最大体积V=V(1)=9×12-6×13=3(m2).
5.若球的半径为R,作内接于球的圆柱,则其侧面积的最大值为( )
A.2πR2 B.πR2
C.4πR2 D.πR2
[答案] A
[解析] 设内接圆柱的高为h,底面半径为x,
则x=
∴S侧=2πxh=2πh=2π
令t=R2h2-,则t′=2R2h-h3
令t′=0,则h=R
当0
0,当R
所以当h=R时,圆柱侧面积最大.
∴侧面积最大值为2π=2πR2,故应选A.
6.(2010·山东文,8)已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获取最大的年利润的年产量为( )
A.13万件 B.11万件
C.9万件 D.7万件
[答案] C
[解析] 本题考查了导数的应用及求导运算.
∵x>0,y′=-x2+81=(9-x)(9+x),
令y′=0,解得x=9,所以x∈(0,9)时,y′>0,
x∈(9,+∞)时,y′<0,y先增后减.
∴x=9时函数取最大值,选C,属导数法求最值问题.
7.内接于半径为R的半圆的矩形中,周长最大的矩形的边长为( )
A.和R B.R和R
C.R和R D.以上都不对
[答案] B
[解析] 设矩形一边的长为x,
则另一边长为2,
则l=2x+4(0
l′=2-,
令l′=0,解得x1=R,x2=-R(舍去).
当0
0;当R
所以当x=R时,l取最大值,即周长最大的矩形的边长为R,R.
8.要做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为( )
A.cm B.cm
C.cm D.cm
[答案] D
[解析] 设圆锥的高为x,则底面半径为,
其体积为V=πx(202-x2)(0
V′=π(400-3x2),
令V′=0,解得x1=,x2=-舍去.
当0
0;当
9.在半径为r的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为( )
A. B.r
C.r D.r
[答案] D
[解析] 如下图所示,为圆及其内接梯形,设∠COB=θ,则CD=2rcosθ,h=rsinθ,
∴S=·rsinθ=r2sinθ(1+cosθ)
∴S′=r2[cosθ(1+cosθ)-sin2θ]
=r2(2cos2θ+cosθ-1)
令S′=0得cosθ=-1(舍去)或cosθ=.
即当cosθ=时,梯形面积最大,此时上底CD=2rcosθ=r.故应选D.
10.某厂生产某种产品x件的总成本:C(x)=1200+x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为( )
A.25件 B.20件
C.15件 D.30件
[答案] A
[解析] 设产品单价为a元,又产品单价的平方与产品件数x成反比,即a2x=k,由题知k=250000,则a2x=250000,所以a=.
总利润y=500-x3-1200(x>0),
y′=-x2,
由y′=0,得x=25,当x∈(0,25)时,y′>0,
x∈(25,+∞)时,y′<0,所以x=25时,y取最大值.
二、填空题
11.某工厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当墙壁所用的材料最省时堆料场的长和宽分别为________.
[答案] 32m,16m
[解析] 设长,宽分别为a,b,则ab=512,且l=a+2b,∴l=2b+,∴l′=2-,
令l′=0得b2=256,∴b=16,a=32.
即当长、宽分别为32m、16m时最省材料.
12.容积为256L的方底无盖水箱,它的高为________时最省材料.
[答案] 4
[解析] 设水箱高为h,底面边长为a,则a2h=256,其面积为S=a2+4ah=a2+4a·=a2+.
令S′=2a-=0,得a=8.
当0
8时,S′>0;当a=8时,S最小,此时h==4.
13.内接于半径为R的球,且体积最大的圆柱的高为____________.
[答案] R
[解析] 如图,ABCD为球面内接圆柱的轴截面,BD=2R,设圆柱的高为x,则圆柱底面半径为r=,
圆柱体积V=πr2x=(4R2-x2)x(0
令V′=(4R2-3x2)=0得x=R.
因为V(x)只有一个极值,所以当圆柱的高为R时,球内接圆柱体积最大.
14.如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器(图(2)).当这个正六棱柱容器的底面边长为________时,其容积最大.
[答案]
[解析] 设四边形较短边为x,则较长边为x,正六棱柱底面边长为1-2x,高为x,
∴V=6××sin60°×(1-2x)2×x=x(1-2x)2.
V′=(1-2x)(1-6x),
令V′=0,得x=或x=(舍去).
当0
0;当
因此当x=时,V有最大值,此时底面边长为1-2×=.
三、解答题
15.一艘轮船在航行中燃料费和它的速度的立方成正比.已知速度为每小时10千米时,燃料费是每小时6元,而其它与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1千米所需的费用总和为最小?
[解析] 设速度为每小时v千米的燃料费是每小时p元,那么由题设的比例关系得p=k·v3,其中k为比例常数,它可以由v=10,p=6求得,即k==0.006.于是有p=0.006v3.
又设当船的速度为每小时v千米时,行1千米所需的总费用为q元,那么每小时所需的总费用是0.006v3+96(元),而行1千米所需用时间为小时,所以行1千米的总费用为
q=(0.006v3+96)=0.006v2+.
q′=0.012v-=(v3-8000),
令q′=0,解得v=20.
因当v<20时,q′<0;当v>20时,q′>0,所以当v=20时取得最小值.
即当速度为20千米/小时时,航行1千米所需费用总和最小.
16.(2009·湖南理,19)某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其它因素.记余下工程的费用为y万元.
(1)试写出y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使y最小?
[分析] 考查函数的性质和导数的运算及利用导数研究函数性质的能力和解决实际应用问题的能力.
[解析] (1)设需新建n个桥墩,则(n+1)x=m,
即n=-1,
所以y=f(x)=256n+(n+1)(2+)x
=256+(2+)x
=+m+2m-256.
(2)由(1)知,f′(x)=-+mx-=(x-512).
令f′(x)=0,得x=512,所以x=64.
当0
当64
0,f(x)在区间(64,640)内为增函数.
所以f(x)在x=64处取得最小值,此时n=-1=-1=9,
故需新建9个桥墩才能使y最小.
17.(2010·湖北理,17)为了在夏季降温和冬季供暖时减少能源损耗 ,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
[解析] (1)设隔热层厚度为x cm,由题设,每年能源消耗费用为C(x)=,
再由C(0)=8,得k=40,因此C(x)=,
而建造费用为C1(x)=6x.
最后得隔热层建造费用与20年的能源消耗费用之和为f(x)=20C(x)+C1(x)=20×+6x=+6x(0≤x≤10).
(2)f ′(x)=6-,
令f ′(x)=0,即=6,
解得x=5,x=-(舍去).
当0
0,故x=5是f(x)的最小值点,对应的最小值为f(5)=6×5+=70.
当隔热层修建5 cm厚时,总费用达到最小值70万元.
18.(2009·山东理,21)两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与对城B的影响度之和.记C点到城A的距离为xkm,建在C处的垃圾处理厂对城A和城B的总影响度为y.统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在弧的中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(2)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点对城A的距离;若不存在,说明理由.
[解析] (1)根据题意∠ACB=90°,AC=xkm,BC=km,
且建在C处的垃圾处理厂对城A的影响度为,对城B的影响度为,
因此,总影响度y为y=+(0
又因为垃圾处理厂建在弧的中点时,对城A和城B的总影响度为0.065,
所以+=0.065,
解得k=9,所以y=+(0
(2)因为y′=-+
==.
由y′=0解得x=4或x=-4(舍去).
易知4∈(0,20).
y,y′随x的变化情况如下表:
x (0,4) 4 (4,20)
y′ - 0 +
y ? 极小值 ?
由表可知,函数在(0,4)内单调递减,在(4,20)内单调递增.
y最小值=y|x=4=,此时x=4,
故在上存在C点,使得建在此处的垃圾处理厂对城A和城B的总影响最小,该点与城A的距离x=4km.选修2-2 2.1.1 第2课时 类比推理
一、选择题
1.下列说法正确的是( )
A.由合情推理得出的结论一定是正确的
B.合情推理必须有前提有结论
C.合情推理不能猜想
D.合情推理得出的结论无法判定正误
[答案] B
[解析] 由合情推理得出的结论不一定正确,A不正确;B正确;合情推理的结论本身就是一个猜想,C不正确;合情推理结论可以通过证明来判定正误,D也不正确,故应选B.
2.下面几种推理是合情推理的是( )
①由圆的性质类比出球的有关性质
②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°
③教室内有一把椅子坏了,则该教室内的所有椅子都坏了
④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n-2)·180°
A.①②
B.①③④
C.①②④
D.②④
[答案] C
[解析] ①是类比推理;②④都是归纳推理,都是合情推理.
3.三角形的面积为S=(a+b+c)·r,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理,可以得到四面体的体积为( )
A.V=abc
B.V=Sh
C.V=(S1+S2+S3+S4)r,(S1、S2、S3、S4分别为四面体四个面的面积,r为四面体内切球的半径)
D.V=(ab+bc+ac)h(h为四面体的高)
[答案] C
[解析] 边长对应表面积,内切圆半径应对应内切球半径.故应选C.
4.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是( )
①各棱长相等,同一顶点上的任两条棱的夹角都相等
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等
③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等
A.①
B.①②
C.①②③
D.③
[答案] C
[解析] 正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.
5.类比三角形中的性质:
(1)两边之和大于第三边
(2)中位线长等于底边的一半
(3)三内角平分线交于一点
可得四面体的对应性质:
(1)任意三个面的面积之和大于第四个面的面积
(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的
(3)四面体的六个二面角的平分面交于一点
其中类比推理方法正确的有( )
A.(1)
B.(1)(2)
C.(1)(2)(3)
D.都不对
[答案] C
[解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.
6.由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“a·b=b·a”;
②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;
③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;
④“t≠0,mt=xt m=x”类比得到“p≠0,a·p=x·p a=x”;
⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;
⑥“=”类比得到“=”.
以上式子中,类比得到的结论正确的个数是( )
A.1
B.2
C.3
D.4
[答案] B
[解析] 由向量的有关运算法则知①②正确,③④⑤⑥都不正确,故应选B.
7.(2010·浙江温州)如图所示,椭圆中心在坐标原点,F为左焦点,当⊥时,其离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于( )
A.
B.
C.-1
D.+1
[答案] A
[解析] 如图所示,设双曲线方程为-=1(a>0,b>0),
则F(-c,0),B(0,b),A(a,0)
∴=(c,b),=(-a,b)
又∵⊥,∴·=b2-ac=0
∴c2-a2-ac=0
∴e2-e-1=0
∴e=或e=(舍去),
故应选A.
8.六个面都是平行四边形的四棱柱称为平行六面体.如图甲,在平行四边形ABD中,有AC2+BD2=2(AB2+AD2),那么在图乙中所示的平行六面体ABCD-A1B1C1D1中,AC+BD+CA+DB等于( )
A.2(AB2+AD2+AA)
B.3(AB2+AD2+AA)
C.4(AB2+AD2+AA)
D.4(AB2+AD2)
[答案] C
[解析] AC+BD+CA+DB
=(AC+CA)+(BD+DB)
=2(AA+AC2)+2(BB+BD2)
=4AA+2(AC2+BD2)
=4AA+4AB2+4AD2,故应选C.
9.下列说法正确的是( )
A.类比推理一定是从一般到一般的推理
B.类比推理一定是从个别到个别的推理
C.类比推理是从个别到个别或一般到一般的推理
D.类比推理是从个别到一般的推理
[答案] C
[解析] 由类比推理的定义可知:类比推理是从个别到个别或一般到一般的推理,故应选C.
10.下面类比推理中恰当的是( )
A.若“a·3=b·3,则a=b”类比推出“若a·0=b·0,则a=b”
B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”
C.“(a+b)c=ac+bc”类比推出“=+(c≠0)”
D.“(ab)n=anbn”类比推出“(a+b)n=an+bn”
[答案] C
[解析] 结合实数的运算知C是正确的.
二、填空题
11.设f(x)=,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为________.
[答案] 3
[解析] 本题是“方法类比”.因等比数列前n项和公式的推导方法是倒序相加,亦即首尾相加,那么经类比不难想到f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)=[f(-5)+f(6)]+[f(-4)+f(5)]+…+[f(0)+f(1)],
而当x1+x2=1时,有f(x1)+f(x2)=
==,故所求答案为6×=3.
12.(2010·广州高二检测)若数列{an}是等差数列,对于bn=(a1+a2+…+an),则数列{bn}也是等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn>0,则dn=________时,数列{dn}也是等比数列.
[答案]
13.在以原点为圆心,半径为r的圆上有一点P(x0,y0),则过此点的圆的切线方程为x0x+y0y=r2,而在椭圆+=1(a>b>0)中,当离心率e趋近于0时,短半轴b就趋近于长半轴a,此时椭圆就趋近于圆.类比圆的面积公式,在椭圆中,S椭=________.类比过圆上一点P(x0,y0)的圆的切线方程,则过椭圆+=1(a>b>0)上一点P(x1,y1)的椭圆的切线方程为________.
[答案] π·a·b;·x+·y=1
[解析] 当椭圆的离心率e趋近于0时,椭圆趋近于圆,此时a,b都趋近于圆的半径r,故由圆的面积S=πr2=π·r·r,猜想椭圆面积S椭=π·a·b,其严格证明可用定积分处理.而由切线方程x0·x+y0·y=r2变形得·x+·y=1,则过椭圆上一点P(x1,y1)的椭圆的切线方程为·x+·y=1,其严格证明可用导数求切线处理.
14.在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式__________成立.
[答案] b1b2…bn=b1b2…b17-n(n<17,n∈N*)
[解析] 解法1:从分析所提供的性质入手:由a10=0,可得ak+a20-k=0,因而当n<19-n时,有a1+a2+…+a19-n=a1+a2+…+an+an+1+an+2+…+a19-n,
而an+1+an+2+…+a19-n==0,∴等式成立.同理可得n>19-n时的情形.
由此可知:等差数列{an}之所以有等式成立的性质,关键在于在等差数列中有性质:an+1+a19-n=2a10=0,类似地,在等比数列{bn}中,也有性质:bn+1·b17-n=b=1,因而得到答案:b1b2…bn=b1b2…b17-n(n<17,n∈N*).
解法2:因为在等差数列中有“和”的性质a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立,故在等比数列{bn}中,由b9=1,可知应有“积”的性质b1b2…bn=b1b2…b17-n(n<17,n∈N*)成立. (1)
证明如下:当n<8时,等式(1)为b1b2…bn=b1b2…bnbn+1…b17-n
即:bn+1·bn+2…b17-n=1.(2)
∵b9=1,∴bk+1·b17-k=b=1.
∴bn+1bn+2…b17-n=b=1.
∴(2)式成立,即(1)式成立;
当n=8时,(1)式即:b9=1显然成立;
当8<n<17时,(1)式即:
b1b2…b17-n·b18-n·…bn=b1b2…b17-n
即:b18-n·b19-n…bn=1(3)
∵b9=1,∴b18-k·bk=b=1
∴b18-nb19-n·…·bn=b=1
∴(3)式成立,即(1)式成立.
综上可知,当等比数列{bn}满足b9=1时,有:
b1b2…bn=b1b2…b17-n(n<17,n∈N*)成立.
三、解答题
15.已知:等差数列{an}的公差为d,前n项和为Sn,有如下的性质:
(1)an=am+(n-m)·d.
(2)若m+n=p+q,其中,m、n、p、q∈N*,则am+an=ap+aq.
(3)若m+n=2p,m,n,p∈N*,则am+an=2ap.
(4)Sn,S2n-Sn,S3n-S2n构成等差数列.
类比上述性质,在等比数列{bn}中,
写出相类似的性质.
[解析] 等比数列{bn}中,公比q,前n项和Sn.
(1)通项an=am·qn-m.
(2)若m+n=p+q,其中m,n,p,q∈N*,
则am·an=ap·aq.
(3)若m+n=2p,其中,m,n,p∈N*,则a=am·an.
(4)Sn,S2n-Sn,S3n-S2n构成等比数列.
16.先解答(1),再根据结构类比解答(2).
(1)已知a,b为实数,且|a|<1,|b|<1,求证:ab+1>a+b.
(2)已知a,b,c均为实数,且|a|<1,|b|<1,|c|<1,求证:abc+2>a+b+c.
[解析] (1)ab+1-(a+b)=(a-1)(b-1)>0.
(2)∵|a|<1,|b|<1,|c|<1,据(1)得(ab)·c+1>ab+c,
∴abc+2=[(ab)·c+1]+1>(ab+c)+1=(ab+1)+c>a+b+c.
你能再用归纳推理方法猜想出更一般地结论吗?
[点评] (1)与(2)的条件与结论有着相同的结构,通过分析(1)的推证过程及结论的构成进行类比推广得出:(ab)·c+1>ab+c是关键.
用归纳推理可推出更一般的结论:ai为实数,|ai|<1,i=1、2、…、n,则有:a1a2…an+(n-1)>a1+a2+…+an.
17.点P在圆C:x2+y2=1上,经过点P的圆的切线方程为x+y=1,又点Q(2,1)在圆C外部,容易证明直线2x+y=1与圆相交,点R在圆C的内部.直线x+y=1与圆相离.类比上述结论,你能给出关于一点P(a,b)与圆x2+y2=r2的位置关系与相应直线与圆的位置关系的结论吗?
[解析] 点P(a,b)在⊙C:x2+y2=r2上时,直线ax+by=r2与⊙C相切;点P在⊙C内时,直线ax+by=r2与⊙C相离;点P在⊙C外部时,直线ax+by=r2与⊙C相交.容易证明此结论是正确的.
18.我们知道:
12= 1,
22=(1+1)2=12+2×1+1,
32=(2+1)2=22+2×2+1,
42=(3+1)2=32+2×3+1,
……
n2=(n-1)2+2(n-1)+1,
左右两边分别相加,得
n2=2×[1+2+3+…+(n-1)]+n
∴1+2+3+…+n=.
类比上述推理方法写出求
12+22+32+…+n2的表达式的过程.
[解析] 我们记S1(n)=1+2+3+…+n,
S2(n)=12+22+32+…+n2,…Sk(n)=1k+2k+3k+…+nk (k∈N*).
已知
13= 1,
23=(1+1)3=13+3×12+3×1+1,
33=(2+1)3=23+3×22+3×2+1,
43=(3+1)3=33+3×32+3×3+1,
……
n3=(n-1)3+3(n-1)2+3(n-1)+1.
将左右两边分别相加,得
S3(n)=[S3(n)-n3]+3[S2(n)-n2]+3[S1(n)-n]+n.
由此知S2(n)==
=.选修2-2 1.5.1曲边梯形的面积、1.5.2汽车行驶的路程
一、选择题
1.和式(yi+1)可表示为( )
A.(y1+1)+(y5+1)
B.y1+y2+y3+y4+y5+1
C.y1+y2+y3+y4+y5+5
D.(y1+1)(y2+1)…(y5+1)
[答案] C
[解析] (yi+1)=(y1+1)+(y2+1)+(y3+1)+(y4+1)+(y5+1)=y1+y2+y3+y4+y5+5,故选C.
2.在求由x=a,x=b(a
①n个小曲边梯形的面积和等于S;
②n个小曲边梯形的面积和小于S;
③n个小曲边梯形的面积和大于S;
④n个小曲边梯形的面积和与S之间的大小关系无法确定
A.1个 B.2个
C.3个 D.4个
[答案] A
[解析] n个小曲边梯形是所给曲边梯形等距离分割得到的,因此其面积和为S.∴①正确,②③④错误,故应选A.
3.在“近似代替”中,函数f(x)在区间[xi,xi+1]上的近似值等于( )
A.只能是左端点的函数值f(xi)
B.只能是右端点的函数值f(xi+1)
C.可以是该区间内任一点的函数值f(ξi)(ξi∈[xi,xi+1])
D.以上答案均不正确
[答案] C
[解析] 由求曲边梯形面积的“近似代替”知,C正确,故应选C.
4.(2010·惠州高二检测)求由抛物线y=2x2与直线x=0,x=t(t>0),y=0所围成的曲边梯形的面积时,将区间[0,t]等分成n个小区间,则第i-1个区间为( )
A. B.
C. D.
[答案] D
[解析] 在[0,t]上等间隔插入(n-1)个分点,把区间[0,t]等分成n个小区间,每个小区间的长度均为,故第i-1个区间为,故选D.
5.由直线x=1,y=0,x=0和曲线y=x3所围成的曲边梯形,将区间4等分,则曲边梯形面积的近似值(取每个区间的右端点)是( )
A. B.
C. D.
[答案] D
[解析] s=×
==.
6.在等分区间的情况下,f(x)=(x∈[0,2])及x轴所围成的曲边梯形面积和式的极限形式正确的是( )
A.·]
B.·]
C.
D.·n]
[答案] B
[解析] 将区间[0,2]进行n等分每个区间长度为,故应选B.
二、填空题
7.直线x=0,x=2,y=0与曲线y=x2+1围成的曲边梯形,将区间[0,2]5等分,按照区间左端点和右端点估计梯形面积分别为________、________.
[答案] 3.92 5.52
8.已知某物体运动的速度为v=t,t∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为________.
[答案] 55
三、解答题
9.求直线x=0,x=2,y=0与曲线y=x2所围成曲边梯形的面积.
[分析] 按分割,近似代替,求和,取极限四个步骤进行.
[解析] 将区间[0,2]分成n个小区间,则第i个小区间为.
第i个小区间的面积ΔSi=f·,
∴Sn=·
==(i-1)2
=[02+12+22+…+(n-1)2]
=·
=.
S=Sn= =,
∴所求曲边梯形面积为.
[点评] 注意求平方和时,用到数列中的一个求和公式.12+22+…+n2=.不要忘记对Sn求极限.
10.汽车以速度v做匀速直线运动时,经过时间t所行驶的路程s=vt.如果汽车做变速直线运动,在时刻t的速度为v(t)=t2+2(单位:km/h),那么它在1≤t≤2(单位:h)这段时间行驶的路程是多少?
[分析] 汽车行驶路程类似曲边梯形面积,根据曲边梯形面积思想,求和后再求极限值.
[解析] 将区间[1,2]等分成n个小区间,第i个小区间为.
∴Δsi=f·.
sn=·
=
=
=3n+[02+12+22+…+(n-1)2]+[0+2+4+6+…+2(n-1)]
=3++.
s=sn= =.
∴这段时间行驶的路程为km.
11.求物体自由落体的下落距离:已知自由落体的运动速度v=gt,求在时间区间[0,t]内物体下落的距离.
[分析] →→→→
[解析] (1)分割:将时间区间[0,t]分成n等份.
把时间[0,t]分成n个小区间(i=1,2,…,n),
每个小区间所表示的时间段Δt=-t=,在各小区间物体下落的距离记作Δsi(i=1,2,…,n).
(2)近似代替:在每个小区间上以匀速运动的路程近似代替变速运动的路程.
在上任取一时刻ξi(i=1,2,…,n),可取ξi使v(ξi)=gt近似代替第i个小区间上的速度,因此在每个小区间上自由落体Δt=内所经过的距离可近似表示为Δsi≈g·(i=1,2,…,n).
(3)求和:sn=si
=·
=[0+1+2+…+(n-1)]
=gt2.
(4)取极限:s= gt2=gt2.
12.求由直线x=1、x=2、y=0及曲线y=围成的图形的面积S.
[解析] (1)分割
在区间[1,2]上等间隔地插入n-1个点,将它等分成n个小区间:
,,…,,记第i个区间为(i=1,2,…,n),其长度为
Δx=-=.
分别过上述n-1个分点作x轴的垂线,把曲边梯形分成n个小曲边梯形(如下图),它们的面积记作:ΔS1,ΔS2,…,ΔSn,则小区边梯形面积的和为S=Si.
(2)近似代替
记f(x)=.当n很大,即Δx很小时,在区间上,可以认为f(x)=的值变化很小,近似地等于一个常数,不妨认为它等于f().从图形上看,就是用平行于x轴的直线段近似地代替小曲边梯形的曲边.这样,在区间上,用小矩形面积ΔSi′近似地代替ΔSi,即在局部小范围内“以直代曲”,则有ΔSi≈ΔSi′=fΔx=·=(i=1,2,…,n).
(3)求和
小曲边梯形的面积和Sn=Si≈Si′
==++…+
=n-+-+…+-
=n=.从而得到S的近似值S≈Sn=.
(4)取极限
分别将区间[1,2]等分成8,16,20,…等份时,Sn越来越趋向于S,从而有S=Sn=.
∴由直线x=1,x=2,y=0及曲线y=围成的图形的面积S为.选修2-2 2.1.1 第1课时 归纳推理
一、选择题
1.关于归纳推理,下列说法正确的是( )
A.归纳推理是一般到一般的推理
B.归纳推理是一般到个别的推理
C.归纳推理的结论一定是正确的
D.归纳推理的结论是或然性的
[答案] D
[解析] 归纳推理是由特殊到一般的推理,其结论的正确性不一定.故应选D.
2.下列推理是归纳推理的是( )
A.A,B为定点,动点P满足|PA|+|PB|=2a>|AB|,得P的轨迹为椭圆
B.由a1=1,an=3n-1,求出S1,S2,S3,猜想出数列的前n项和Sn的表达式
C.由圆x2+y2=r2的面积πr2,猜出椭圆+=1的面积S=πab
D.科学家利用鱼的沉浮原理制造潜艇
[答案] B
[解析] 由归纳推理的定义知B是归纳推理,故应选B.
3.数列{an}:2,5,11,20,x,47,…中的x等于( )
A.28
B.32
C.33
D.27
[答案] B
[解析] 因为5-2=3×1,11-5=6=3×2,20-11=9=3×3,猜测x-20=3×4,47-x=3×5,推知x=32.故应选B.
4.在数列{an}中,a1=0,an+1=2an+2,则猜想an是( )
A.2n-2-
B.2n-2
C.2n-1+1
D.2n+1-4
[答案] B
[解析] ∵a1=0=21-2,
∴a2=2a1+2=2=22-2,
a3=2a2+2=4+2=6=23-2,
a4=2a3+2=12+2=14=24-2,
……
猜想an=2n-2.
故应选B.
5.某人为了观看2012年奥运会,从2005年起,每年5月10日到银行存入a元定期储蓄,若年利率为p且保持不变,并约定每年到期存款均自动转为新的一年定期,到2012年将所有的存款及利息全部取回,则可取回的钱的总数(元)为( )
A.a(1+p)7
B.a(1+p)8
C.[(1+p)7-(1+p)]
D.[(1+p)8-(1+p)]
[答案] D
[解析] 到2006年5月10日存款及利息为a(1+p).
到2007年5月10日存款及利息为
a(1+p)(1+p)+a(1+p)=a[(1+p)2+(1+p)]
到2008年5月10日存款及利息为
a[(1+p)2+(1+p)](1+p)+a(1+p)
=a[(1+p)3+(1+p)2+(1+p)]
……
所以到2012年5月10日存款及利息为
a[(1+p)7+(1+p)6+…+(1+p)]
=a
=[(1+p)8-(1+p)].
故应选D.
6.已知数列{an}的前n项和Sn=n2an(n≥2),而a1=1,通过计算a2,a3,a4,猜想an等于( )
A.
B.
C.
D.
[答案] B
[解析] 因为Sn=n2an,a1=1,
所以S2=4a2=a1+a2 a2==,
S3=9a3=a1+a2+a3 a3===,
S4=16a4=a1+a2+a3+a4
a4===.
所以猜想an=,故应选B.
7.n个连续自然数按规律排列下表:
根据规律,从2010到2012箭头的方向依次为( )
A.↓→
B.→↑
C.↑→
D.→↓
[答案] C
[解析] 观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由234可知从2010到2012为↑→,故应选C.
8.(2010·山东文,10)观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )
A.f(x)
B.-f(x)
C.g(x)
D.-g(x)
[答案] D
[解析] 本题考查了推理证明及函数的奇偶性内容,由例子可看出偶函数求导后都变成了奇函数,
∴g(-x)=-g(x),选D,体现了对学生观察能力,概括归纳推理的能力的考查.
9.根据给出的数塔猜测123456×9+7等于( )
1×9+2=11
12×9+3=111
123×9+4=1111
1234×9+5=11111
12345×9+6=111111
…
A.1111110
B.1111111
C.1111112
D.1111113
[答案] B
[解析] 根据规律应为7个1,故应选B.
10.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),
试求第七个三角形数是( )
A.27
B.28
C.29
D.30
[答案] B
[解析] 观察归纳可知第n个三角形数共有点数:1+2+3+4+…+n=个,∴第七个三角形数为=28.
二、填空题
11.观察下列由火柴杆拼成的一列图形中,第n个图形由n个正方形组成:
通过观察可以发现:第4个图形中,火柴杆有________根;第n个图形中,火柴杆有________根.
[答案] 13,3n+1
[解析] 第一个图形有4根,第2个图形有7根,第3个图形有10根,第4个图形有13根……猜想第n个图形有3n+1根.
12.从1=12,2+3+4=32,3+4+5+6+7=52中,可得一般规律是__________________.
[答案] n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
[解析] 第1式有1个数,第2式有3个数相加,第3式有5个数相加,故猜想第n个式子有2n-1个数相加,且第n个式子的第一个加数为n,每数增加1,共有2n-1个数相加,故第n个式子为:
n+(n+1)+(n+2)+…+{n+[(2n-1)-1]}
=(2n-1)2,
即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.
13.观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是S,按此规律推出S与n的关系式为________.
[答案] S=4(n-1)(n≥2)
[解析] 每条边上有2个圆圈时共有S=4个;每条边上有3个圆圈时,共有S=8个;每条边上有4个圆圈时,共有S=12个.可见每条边上增加一个点,则S增加4,∴S与n的关系为S=4(n-1)(n≥2).
14.(2009·浙江理,15)观察下列等式:
C+C=23-2,
C+C+C=27+23,
C+C+C+C=211-25,
C+C+C+C+C=215+27,
……
由以上等式推测到一个一般的结论:
对于n∈N*,C+C+C+…+C=__________________.
[答案] 24n-1+(-1)n22n-1
[解析] 本小题主要考查归纳推理的能力
等式右端第一项指数3,7,11,15,…构成的数列通项公式为an=4n-1,第二项指数1,3,5,7,…的通项公式bn=2n-1,两项中间等号正、负相间出现,∴右端=24n-1+(-1)n22n-1.
三、解答题
15.在△ABC中,不等式++≥成立,
在四边形ABCD中,不等式+++≥成立,
在五边形ABCDE中,不等式++++≥成立,猜想在n边形A1A2…An中,有怎样的不等式成立?
[解析] 根据已知特殊的数值:、、,…,总结归纳出一般性的规律:(n≥3).
∴在n边形A1A2…An中:++…+≥(n≥3).
16.下图中(1)、(2)、(3)、(4)为四个平面图.数一数每个平面图各有多少个顶点?多少条边?它们围成了多少个区域?并将结果填入下表中.
平面区域 顶点数 边数 区域数
(1)
(2)
(3)
(4)
(1)观察上表,推断一个平面图形的顶点数、边数、区域数之间有什么关系?
(2)现已知某个平面图有999个顶点,且围成了999个区域,试根据以上关系确定这个平面图有多少条边?
[解析] 各平面图形的顶点数、边数、区域数如下表:
平面区域 顶点数 边数 区域数 关系
(1) 3 3 2 3+2-3=2
(2) 8 12 6 8+6-12=2
(3) 6 9 5 6+5-9=2
(4) 10 15 7 10+7-15=2
结论 V E F V+F-E=2
推广 999 E 999 E=999+999-2=1996
其顶点数V,边数E,平面区域数F满足关系式V+F-E=2.
故可猜想此平面图可能有1996条边.
17.在一容器内装有浓度为r%的溶液a升,注入浓度为p%的溶液a升,搅匀后再倒出溶液a升,这叫一次操作,设第n次操作后容器内溶液的浓度为bn(每次注入的溶液浓度都是p%),计算b1、b2、b3,并归纳出bn的计算公式.
[解析] b1==,
b2==.
b3=
=,
∴归纳得bn=.
18.设f(n)=n2+n+41,n∈N+,计算f(1),f(2),f(3),…,f(10)的值,同时作出归纳推理,并用n=40验证猜想是否正确.
[解析] f(1)=12+1+41=43,f(2)=22+2+41=47,
f(3)=32+3+41=53,f(4)=42+4+41=61,
f(5)=52+5+41=71,f(6)=62+6+41=83,
f(7)=72+7+41=97,f(8)=82+8+41=113,
f(9)=92+9+41=131,f(10)=102+10+41=151.
由于43、47、53、61、71、83、97、113、131、151都为质数.
即:当n取任何非负整数时f(n)=n2+n+41的值为质数.
但是当n=40时,f(40)=402+40+41=1681为合数.
所以,上面由归纳推理得到的猜想不正确.选修2-2 2.1.2 演绎推理
一、选择题
1.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等”,补充以上推理的大前提是( )
A.正方形都是对角线相等的四边形
B.矩形都是对角线相等的四边形
C.等腰梯形都是对角线相等的四边形
D.矩形都是对边平行且相等的四边形
[答案] B
[解析] 由大前提、小前提、结论三者的关系,知大前提是:矩形是对角线相等的四边形.故应选B.
2.“①一个错误的推理或者前提不成立,或者推理形式不正确,②这个错误的推理不是前提不成立,③所以这个错误的推理是推理形式不正确.”上述三段论是( )
A.大前提错
B.小前提错
C.结论错
D.正确的
[答案] D
[解析] 前提正确,推理形式及结论都正确.故应选D.
3.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是( )
A.类比推理
B.归纳推理
C.演绎推理
D.一次三段论
[答案] C
[解析] 这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式.
4.“因对数函数y=logax(x>0)是增函数(大前提),而y=logx是对数函数(小前提),所以y=logx是增函数(结论)”.上面推理的错误是( )
A.大前提错导致结论错
B.小前提错导致结论错
C.推理形式错导致结论错
D.大前提和小前提都错导致结论错
[答案] A
[解析] 对数函数y=logax不是增函数,只有当a>1时,才是增函数,所以大前提是错误的.
5.推理:“①矩形是平行四边形,②三角形不是平行四边形,③所以三角形不是矩形”中的小前提是( )
A.①
B.②
C.③
D.①②
[答案] B
[解析] 由①②③的关系知,小前提应为“三角形不是平行四边形”.故应选B.
6.三段论:“①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港的,③所以这艘船是准时起航的”中的小前提是( )
A.①
B.②
C.①②
D.③
[答案] B
[解析] 易知应为②.故应选B.
7.“10是5的倍数,15是5的倍数,所以15是10的倍数”上述推理( )
A.大前提错
B.小前提错
C.推论过程错
D.正确
[答案] C
[解析] 大小前提正确,结论错误,那么推论过程错.故应选C.
8.凡自然数是整数,4是自然数,所以4是整数,以上三段论推理( )
A.正确
B.推理形式正确
C.两个自然数概念不一致
D.两个整数概念不一致
[答案] A
[解析] 三段论的推理是正确的.故应选A.
9.在三段论中,M,P,S的包含关系可表示为( )
[答案] A
[解析] 如果概念P包含了概念M,则P必包含了M中的任一概念S,这时三者的包含可表示为;
如果概念P排斥了概念M,则必排斥M中的任一概念S,这时三者的关系应为.故应选A.
10.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( )
A.使用了归纳推理
B.使用了类比推理
C.使用了“三段论”,但大前提使用错误
D.使用了“三段论”,但小前提使用错误
[答案] D
[解析] 应用了“三段论”推理,小前提与大前提不对应,小前提使用错误导致结论错误.
二、填空题
11.求函数y=的定义域时,第一步推理中大前提是有意义时,a≥0,小前提是有意义,结论是________.
[答案] log2x-2≥0
[解析] 由三段论方法知应为log2x-2≥0.
12.以下推理过程省略的大前提为:________.
∵a2+b2≥2ab,
∴2(a2+b2)≥a2+b2+2ab.
[答案] 若a≥b,则a+c≥b+c
[解析] 由小前提和结论可知,是在小前提的两边同时加上了a2+b2,故大前提为:若a≥b,则a+c≥b+c.
13.(2010·重庆理,15)已知函数f(x)满足:f(1)=,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2010)=________.
[答案]
[解析] 令y=1得4f(x)·f(1)=f(x+1)+f(x-1)
即f(x)=f(x+1)+f(x-1) ①
令x取x+1则f(x+1)=f(x+2)+f(x) ②
由①②得f(x)=f(x+2)+f(x)+f(x-1),
即f(x-1)=-f(x+2)
∴f(x)=-f(x+3),∴f(x+3)=-f(x+6)
∴f(x)=f(x+6)
即f(x)周期为6,
∴f(2010)=f(6×335+0)=f(0)
对4f(x)f(y)=f(x+y)+f(x-y),令x=1,y=0,得
4f(1)f(0)=2f(1),
∴f(0)=即f(2010)=.
14.四棱锥P-ABCD中,O为CD上的动点,四边形ABCD满足条件________时,VP-AOB恒为定值(写出一个你认为正确的一个条件即可).
[答案] 四边形ABCD为平行四边形或矩形或正方形等
[解析] 设h为P到面ABCD的距离,VP-AOB=S△AOB·h,
又S△AOB=|AB|d(d为O到直线AB的距离).
因为h、|AB|均为定值,所以VP-AOB恒为定值时,只有d也为定值,这是一个开放型问题,答案为四边形ABCD为平行四边形或矩形或正方形等.
三、解答题
15.用三段论形式证明:在梯形ABCD中,AD∥BC,AB=DC,则∠B=∠C.
[证明] 如下图延长AB,DC交于点M.
①平行线分线段成比例大前提
②△AMD中AD∥BC小前提
③=结论
①等量代换大前提
②AB=CD小前提
③MB=MC结论
在三角形中等边对等角大前提
MB=MC小前提
∠1=∠MBC=∠MCB=∠2结论
等量代换大前提
∠B=π-∠1 ∠C=π-∠2小前提
∠B=∠C结论
16.用三段论形式证明:f(x)=x3+x(x∈R)为奇函数.
[证明] 若f(-x)=-f(x),则f(x)为奇函数 大前提
∵f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)=-f(x)小前提
∴f(x)=x3+x是奇函数结论
17.用三段论写出求解下题的主要解答过程.
若不等式|ax+2|<6的解集为(-1,2),求实数a的值.
[解析] 推理的第一个关键环节:
大前提:如果不等式f(x)<0的解集为(m,n),且f(m)、f(n)有意义,则m、n是方程f(x)=0的实数根,
小前提:不等式|ax+2|<6的解集为(-1,2),且x=-1与x=2都使表达式|ax+2|-6有意义,
结论:-1和2是方程|ax+2|-6=0的根.
∴|-a+2|-6=0与|2a+2|-6=0同时成立.
推理的第二个关键环节:
大前提:如果|x|=a,a>0,那么x=±a,
小前提:|-a+2|=6且|2a+2|=6,
结论:-a+2=±6且2a+2=±6.
以下可得出结论a=-4.
18.设A(x1,y1)、B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线.
(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;
(2)当直线l的斜率为2时,求l在y轴上截距的取值范围.
[解析] (1)F∈l |FA|=|FB| A、B两点到抛物线的准线的距离相等.
∵抛物线的准线是x轴的平行线,y1≥0,y2≥0,依题意,y1,y2不同时为0.
∴上述条件等价于
y1=y2 x=x (x1+x2)(x1-x2)=0.
∵x1≠x2,∴上述条件等价于x1+x2=0,即当且仅当x1+x2=0时,l经过抛物线的焦点F.
(2)设l在y轴上的截距为b,依题意得l的方程为y=2x+b;过点A、B的直线方程为y=-x+m,所以x1,x2满足方程2x2+x-m=0,得x1+x2=-.
A、B为抛物线上不同的两点等价于上述方程的判别式Δ=+8m>0,即m>-.设AB的中点N的坐标为(x0,y0),则
x0=(x1+x2)=-,
y0=-x0+m=+m.
由N∈l,得+m=-+b,于是
b=+m>-=.
即得l在y轴上截距的取值范围是.选修2-2 1.1 第2课时 导数的概念
一、选择题
1.函数在某一点的导数是( )
A.在该点的函数值的增量与自变量的增量的比
B.一个函数
C.一个常数,不是变数
D.函数在这一点到它附近一点之间的平均变化率
[答案] C
[解析] 由定义,f′(x0)是当Δx无限趋近于0时,无限趋近的常数,故应选C.
2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )
A.6 B.18
C.54 D.81
[答案] B
[解析] ∵s(t)=3t2,t0=3,
∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-3·32
=18Δt+3(Δt)2∴=18+3Δt.
当Δt→0时,→18,故应选B.
3.y=x2在x=1处的导数为( )
A.2x B.2
C.2+Δx D.1
[答案] B
[解析] ∵f(x)=x2,x=1,
∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2·Δx+(Δx)2
∴=2+Δx
当Δx→0时,→2
∴f′(1)=2,故应选B.
4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的瞬时速度为( )
A.37 B.38
C.39 D.40
[答案] D
[解析] ∵==40+4Δt,
∴s′(5)=li =li (40+4Δt)=40.故应选D.
5.已知函数y=f(x),那么下列说法错误的是( )
A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量
B.=叫做函数在x0到x0+Δx之间的平均变化率
C.f(x)在x0处的导数记为y′
D.f(x)在x0处的导数记为f′(x0)
[答案] C
[解析] 由导数的定义可知C错误.故应选C.
6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )
A.f′(x0)=f(x0+Δx)-f(x0)
B.f′(x0)=li[f(x0+Δx)-f(x0)]
C.f′(x0)=
D.f′(x0)=li
[答案] D
[解析] 由导数的定义知D正确.故应选D.
7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )
A.4a B.2a+b
C.b D.4a+b
[答案] D
[解析] ∵=
=4a+b+aΔx,
∴y′|x=2=li =li (4a+b+a·Δx)=4a+b.故应选D.
8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( )
A.圆 B.抛物线
C.椭圆 D.直线
[答案] D
[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.
9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )
A.0 B.3
C.-2 D.3-2t
[答案] B
[解析] ∵==3-Δt,
∴s′(0)=li =3.故应选B.
10.设f(x)=,则li 等于( )
A.- B.
C.- D.
[答案] C
[解析] li =li
=li =-li =-.
二、填空题
11.已知函数y=f(x)在x=x0处的导数为11,则
li=________;
li =________.
[答案] -11,-
[解析] li
=-li =-f′(x0)=-11;
li =-li
=-f′(x0)=-.
12.函数y=x+在x=1处的导数是________.
[答案] 0
[解析] ∵Δy=-
=Δx-1+=,
∴=.∴y′|x=1=li =0.
13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.
[答案] 2
[解析] ∵==a,
∴f′(1)=li =a.∴a=2.
14.已知f′(x0)=li ,f(3)=2,f′(3)=-2,则li 的值是________.
[答案] 8
[解析] li =li
+li .
由于f(3)=2,上式可化为
li -3li =2-3×(-2)=8.
三、解答题
15.设f(x)=x2,求f′(x0),f′(-1),f′(2).
[解析] 由导数定义有f′(x0)
=li
=li =li =2x0,
16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.
[解析] 位移公式为s=at2
∵Δs=a(t0+Δt)2-at=at0Δt+a(Δt)2
∴=at0+aΔt,
∴li =li =at0,
已知a=5.0×105m/s2,t0=1.6×10-3s,
∴at0=800m/s.
所以枪弹射出枪口时的瞬时速度为800m/s.
17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1) (2)f′(1).
[解析] (1)=
==2+Δx.
(2)f′(1)=
= (2+Δx)=2.
18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.
[解析] f(x)=
Δy=f(0+Δx)-f(0)=f(Δx)
=
∴ = (1+Δx)=1,
= (-1-Δx)=-1,
∵ ≠ ,∴Δx→0时,无极限.
∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)选修2-2 1.2.2 第2课时 基本初等函数的导数公式及导数运算法则
一、选择题
1.函数y=(x+1)2(x-1)在x=1处的导数等于( )
A.1 B.2
C.3 D.4
[答案] D
[解析] y′=[(x+1)2]′(x-1)+(x+1)2(x-1)′
=2(x+1)·(x-1)+(x+1)2=3x2+2x-1,
∴y′|x=1=4.
2.若对任意x∈R,f′(x)=4x3,f(1)=-1,则f(x)=( )
A.x4 B.x4-2
C.4x3-5 D.x4+2
[答案] B
[解析] ∵f′(x)=4x3.∴f(x)=x4+c,又f(1)=-1
∴1+c=-1,∴c=-2,∴f(x)=x4-2.
3.设函数f(x)=xm+ax的导数为f′(x)=2x+1,则数列{}(n∈N*)的前n项和是( )
A. B.
C. D.
[答案] A
[解析] ∵f(x)=xm+ax的导数为f′(x)=2x+1,
∴m=2,a=1,∴f(x)=x2+x,
即f(n)=n2+n=n(n+1),
∴数列{}(n∈N*)的前n项和为:
Sn=+++…+
=++…+
=1-=,
故选A.
4.二次函数y=f(x)的图象过原点,且它的导函数y=f′(x)的图象是过第一、二、三象限的一条直线,则函数y=f(x)的图象的顶点在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
[答案] C
[解析] 由题意可设f(x)=ax2+bx,f′(x)=2ax+b,由于f′(x)的图象是过第一、二、三象限的一条直线,故2a>0,b>0,则f(x)=a2-,
顶点在第三象限,故选C.
5.函数y=(2+x3)2的导数为( )
A.6x5+12x2 B.4+2x3
C.2(2+x3)2 D.2(2+x3)·3x
[答案] A
[解析] ∵y=(2+x3)2=4+4x3+x6,
∴y′=6x5+12x2.
6.(2010·江西文,4)若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=( )
A.-1 B.-2
C.2 D.0
[答案] B
[解析] 本题考查函数知识,求导运算及整体代换的思想,f′(x)=4ax3+2bx,f′(-1)=-4a-2b=-(4a+2b),f′(1)=4a+2b,∴f′(-1)=-f′(1)=-2
要善于观察,故选B.
7.设函数f(x)=(1-2x3)10,则f′(1)=( )
A.0 B.-1
C.-60 D.60
[答案] D
[解析] ∵f′(x)=10(1-2x3)9(1-2x3)′=10(1-2x3)9·(-6x2)=-60x2(1-2x3)9,∴f′(1)=60.
8.函数y=sin2x-cos2x的导数是( )
A.2cos B.cos2x-sin2x
C.sin2x+cos2x D.2cos
[答案] A
[解析] y′=(sin2x-cos2x)′=(sin2x)′-(cos2x)′
=2cos2x+2sin2x=2cos.
9.(2010·高二潍坊检测)已知曲线y=-3lnx的一条切线的斜率为,则切点的横坐标为( )
A.3 B.2
C.1 D.
[答案] A
[解析] 由f′(x)=-=得x=3.
10.设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为( )
A.- B.0
C. D.5
[答案] B
[解析] 由题设可知f(x+5)=f(x)
∴f′(x+5)=f′(x),∴f′(5)=f′(0)
又f(-x)=f(x),∴f′(-x)(-1)=f′(x)
即f′(-x)=-f′(x),∴f′(0)=0
故f′(5)=f′(0)=0.故应选B.
二、填空题
11.若f(x)=,φ(x)=1+sin2x,则f[φ(x)]=_______,φ[f(x)]=________.
[答案] ,1+sin2
[解析] f[φ(x)]==
=|sinx+cosx|=.
φ[f(x)]=1+sin2.
12.设函数f(x)=cos(x+φ)(0<φ<π),若f(x)+f′(x)是奇函数,则φ=________.
[答案]
[解析] f′(x)=-sin(x+φ),
f(x)+f′(x)=cos(x+φ)-sin(x+φ)
=2sin.
若f(x)+f′(x)为奇函数,则f(0)+f′(0)=0,
即0=2sin,∴φ+=kπ(k∈Z).
又∵φ∈(0,π),∴φ=.
13.函数y=(1+2x2)8的导数为________.
[答案] 32x(1+2x2)7
[解析] 令u=1+2x2,则y=u8,
∴y′x=y′u·u′x=8u7·4x=8(1+2x2)7·4x
=32x(1+2x2)7.
14.函数y=x的导数为________.
[答案]
[解析] y′=(x)′=x′+x()′=+=.
三、解答题
15.求下列函数的导数:
(1)y=xsin2x; (2)y=ln(x+);
(3)y=; (4)y=.
[解析] (1)y′=(x)′sin2x+x(sin2x)′
=sin2x+x·2sinx·(sinx)′=sin2x+xsin2x.
(2)y′=·(x+)′
=(1+)= .
(3)y′== .
(4)y′=
=
=.
16.求下列函数的导数:
(1)y=cos2(x2-x); (2)y=cosx·sin3x;
(3)y=xloga(x2+x-1); (4)y=log2.
[解析] (1)y′=[cos2(x2-x)]′
=2cos(x2-x)[cos(x2-x)]′
=2cos(x2-x)[-sin(x2-x)](x2-x)′
=2cos(x2-x)[-sin(x2-x)](2x-1)
=(1-2x)sin2(x2-x).
(2)y′=(cosx·sin3x)′=(cosx)′sin3x+cosx(sin3x)′
=-sinxsin3x+3cosxcos3x=3cosxcos3x-sinxsin3x.
(3)y′=loga(x2+x-1)+x·logae(x2+x-1)′=loga(x2+x-1)+logae.
(4)y′=′log2e=log2e
=.
17.设f(x)=,如果f′(x)=·g(x),求g(x).
[解析] ∵f′(x)=
=[(1+x2)cosx-2x·sinx],
又f′(x)=·g(x).
∴g(x)=(1+x2)cosx-2xsinx.
18.求下列函数的导数:(其中f(x)是可导函数)
(1)y=f;(2)y=f().
[解析] (1)解法1:设y=f(u),u=,则y′x=y′u·u′x=f′(u)·=-f′.
解法2:y′=′=f′·′=-f′.
(2)解法1:设y=f(u),u=,v=x2+1,选修2-2 1.1 第1课时 变化率问题
一、选择题
1.在平均变化率的定义中,自变量x在x0处的增量Δx( )
A.大于零 B.小于零
C.等于零 D.不等于零
[答案] D
[解析] Δx可正,可负,但不为0,故应选D.
2.设函数y=f(x),当自变量x由x0变化到x0+Δx时,函数的改变量Δy为( )
A.f(x0+Δx) B.f(x0)+Δx
C.f(x0)·Δx D.f(x0+Δx)-f(x0)
[答案] D
[解析] 由定义,函数值的改变量Δy=f(x0+Δx)-f(x0),故应选D.
3.已知函数f(x)=-x2+x,则f(x)从-1到-0.9的平均变化率为( )
A.3 B.0.29
C.2.09 D.2.9
[答案] D
[解析] f(-1)=-(-1)2+(-1)=-2.
f(-0.9)=-(-0.9)2+(-0.9)=-1.71.
∴平均变化率为==2.9,故应选D.
4.已知函数f(x)=x2+4上两点A,B,xA=1,xB=1.3,则直线AB的斜率为( )
A.2 B.2.3
C.2.09 D.2.1
[答案] B
[解析] f(1)=5,f(1.3)=5.69.
∴kAB===2.3,故应选B.
5.已知函数f(x)=-x2+2x,函数f(x)从2到2+Δx的平均变化率为( )
A.2-Δx B.-2-Δx
C.2+Δx D.(Δx)2-2·Δx
[答案] B
[解析] ∵f(2)=-22+2×2=0,
∴f(2+Δx)=-(2+Δx)2+2(2+Δx)
=-2Δx-(Δx)2,
∴=-2-Δx,故应选B.
6.已知函数y=x2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy),则等于( )
A.2 B.2x
C.2+Δx D.2+(Δx)2
[答案] C
[解析] =
==2+Δx.故应选C.
7.质点运动规律S(t)=t2+3,则从3到3.3内,质点运动的平均速度为( )
A.6.3 B.36.3
C.3.3 D.9.3
[答案] A
[解析] S(3)=12,S(3.3)=13.89,
∴平均速度===6.3,故应选A.
8.在x=1附近,取Δx=0.3,在四个函数①y=x、②y=x2、③y=x3、④y=中,平均变化率最大的是( )
A.④ B.③
C.② D.①
[答案] B
[解析] Δx=0.3时,①y=x在x=1附近的平均变化率k1=1;②y=x2在x=1附近的平均变化率k2=2+Δx=2.3;③y=x3在x=1附近的平均变化率k3=3+3Δx+(Δx)2=3.99;④y=在x=1附近的平均变化率k4=-=-.∴k3>k2>k1>k4,故应选B.
9.物体做直线运动所经过的路程s可以表示为时间t的函数s=s(t),则物体在时间间隔[t0,t0+Δt]内的平均速度是( )
A.v0 B.
C. D.
[答案] C
[解析] 由平均变化率的概念知C正确,故应选C.
10.已知曲线y=x2和这条曲线上的一点P,Q是曲线上点P附近的一点,则点Q的坐标为( )
A. B.
C. D.
[答案] C
[解析] 点Q的横坐标应为1+Δx,所以其纵坐标为f(1+Δx)=(Δx+1)2,故应选C.
二、填空题
11.已知函数y=x3-2,当x=2时,=________.
[答案] (Δx)2+6Δx+12
[解析] =
=
=(Δx)2+6Δx+12.
12.在x=2附近,Δx=时,函数y=的平均变化率为________.
[答案] -
[解析] ==-=-.
13.函数y=在x=1附近,当Δx=时的平均变化率为________.
[答案] -2
[解析] ===-2.
14.已知曲线y=x2-1上两点A(2,3),B(2+Δx,3+Δy),当Δx=1时,割线AB的斜率是________;当Δx=0.1时,割线AB的斜率是________.
[答案] 5 4.1
[解析] 当Δx=1时,割线AB的斜率
k1====5.
当Δx=0.1时,割线AB的斜率
k2===4.1.
三、解答题
15.已知函数f(x)=2x+1,g(x)=-2x,分别计算在区间[-3,-1],[0,5]上函数f(x)及g(x)的平均变化率.
[解析] 函数f(x)在[-3,-1]上的平均变化率为
==2.
函数f(x)在[0,5]上的平均变化率为
=2.
函数g(x)在[-3,-1]上的平均变化率为
=-2.
函数g(x)在[0,5]上的平均变化率为
=-2.
16.过曲线f(x)=的图象上两点A(1,2),B(1+Δx,2+Δy)作曲线的割线AB,求出当Δx=时割线的斜率.
[解析] 割线AB的斜率k==
===-.
17.求函数y=x2在x=1、2、3附近的平均变化率,判断哪一点均变化率最大?
[解析] 在x=2附近的平均变化率为
k1===2+Δx;
在x=2附近的平均变化率为
k2===4+Δx;
在x=3附近的平均变化率为
k3===6+Δx.
对任意Δx有,k1<k2<k3,
∴在x=3附近的平均变化率最大.
18.(2010·杭州高二检测)路灯距地面8m,一个身高为1.6m的人以84m/min的速度在地面上从路灯在地面上的射影点C处沿直线离开路灯.
(1)求身影的长度y与人距路灯的距离x之间的关系式;
(2)求人离开路灯的第一个10s内身影的平均变化率.
[解析] (1)如图所示,设人从C点运动到B处的路程为xm,AB为身影长度,AB的长度为ym,由于CD∥BE,
则=,
即=,所以y=f(x)=x.
(2)84m/min=1.4m/s,在[0,10]内自变量的增量为
x2-x1=1.4×10-1.4×0=14,
f(x2)-f(x1)=×14-×0=.
所以==.
即人离开路灯的第一个10s内身影的平均变化率为.
点击下载
同课章节目录
第一章 导数及其应用
1.1变化率与导数
1.2导数的计算
1.3导数在研究函数中的应用
1.4生活中的优化问题举例
1.5定积分的概念
1.6微积分基本定理
1.7定积分的简单应用
第二章 推理与证明
2.1合情推理与演绎推理
2.2直接证明与间接证明
2.3数学归纳法
第三章 数系的扩充与复数的引入
3.1数系的扩充和复数的概念
3.2复数代数形式的四则运算
点击下载
VIP下载