华师大版七年级数学下册第10章 轴对称、平移与旋转复习学案

文档属性

名称 华师大版七年级数学下册第10章 轴对称、平移与旋转复习学案
格式 zip
文件大小 4.2MB
资源类型 教案
版本资源 华师大版
科目 数学
更新时间 2021-04-05 22:13:55

图片预览

文档简介

平移、旋转、轴对称
1.理解轴对称、轴对称图形、中心对称、中心对称图形、平移和图形旋转的概念,并掌握它们的性质.
2.能按平移、旋转或对称的要求作出简单的图形.
3.探索成轴对称或中心对称的平面图形的性质.
4.运用图形的轴对称、旋转、平移进行图案设计.
轴对称
平移
旋转
中心对称
全等
定义
一个(两个)平面图形沿某条直线对折能够完全重合
平面图形在它所在平面上的平行移动。
决定要素:平移的方向、平移的距离
一个平面图形绕一定点按一定的方向旋转一定的角度的运动。
一个图形旋转180°能与自身重合
能够完全重合的两个图形
表示方法:
ΔABC≌ΔDEF
轴对称图形
成轴对称
中心对称图形
成中心对称
全等多边形
全等三角形
对应边
对应角
一个图形;
不止一条对称轴
两个图形;
只有一条对称轴
旋转对称图形:一个图形绕内部某一点旋转一定的角度能与自身重合。
一个图形
两个图形
图形
特征
对应角相等,对应边相等
对应点间的连线平行且相等(或在同一条直线上)
对应边平行且相等(或在同一条直线上),对应角相等,图形的形状和大小不改变。
图形上每一点都绕同一点按相同的方向和角度旋转
对应点到旋转中心的距离相等
对应边相等,对应角相等,图形的性状大小不改变
连结对应点的线段必然经过对称中心,并被对称中心平分成相等的两部分。
对应边相等,对应角相等

断方法
沿着某条直线对折看是否重合。
找平移的方向和距离:
找一组对应点,连线即是他平移的方向和距离
找旋转的方向和角度:
找一组对应点,与旋转中心连线的夹角
旋转180°能否与自身重合
对应点间的连线是否经过同一点,并被这一点平分
各边对应相等;
各角对应相等
找对称轴:找一组对应点连线,做其垂直平分线。找两组对应点连线,过两条中点的直线
找对称中心:找一组对应点连线找其中点
两组对应点连线的交点
画法
找关键点
过每个关键点做对称轴的垂线截取与之相等的距离,标出对应点
连接对应点。
找关键点
过每个关键点做平移方向的平行线截取与之相等的距离,标出对应点
连接对应点。
找关键点
连接关键点与旋转中心,将这条线段按方向和角度旋转,标出对应点
连接对应点。
找关键点
连接关键点与对称中心,延长并截取相等的长度,标出对应点
连接对应点。
重要结论
线段是轴对称图形,对称轴是它的垂直平分线。
角是轴对称图形,对称轴是它的角平分线。
垂直平分线的性质:垂直平分线上任意一点到线段两端的距离相等。④角平分线的性质:角平分线上任意一点到叫两边的距离相等。⑤对称轴垂直平分对称点间的连线。
多次平移相当于一次平移
两条对称轴平行时,两次轴对称相当于一次平移
线段旋转90°后与原来的位置垂直
两条对称轴相交时,两次轴对称相当于一次旋转。
中心对称一定是旋转对称,旋转对称不一定是中心对称。
任何通过中心对称图形的对称中心的直线都将这个图形分成面积相等的两部分。
两条对称轴互相垂直时,两次轴对称相当于一次中心对称
一个图形经过轴对称、平移或选转等变换得到的新图形一定与原图形全等
两个全等的图形总能经过轴对称、平移或旋转等变换后重合。
考点一、轴对称图形与中心对称图形的识别
【例1】如图,既是轴对称图形又是中心对称图形的是(  )
答案:D
【变式1】
下面的图形中,既是轴对称图形又是中心对称图形的是(  )
考点二、图形的平移
【例2】如图,把图①中的⊙A经过平移得到⊙O(如图②),如果图①中⊙A上一点P的坐标为(m,n),那么平移后在图②中的对应点P′的坐标为(  )
A.(m+2,n+1)
B.(m-2,n-1)
C.(m-2,n+1)
D.(m+2,n-1)
答案:D
【变式1】
如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为__________.
考点三、图形的旋转
【例3】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为(  )
A.30,2
B.60,2
C.60,
D.60,
答案:C
【变式1】
如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,有下列结论:①∠CDF=α;②A1E=CF;③DF=FC;④AD=CE;⑤A1F=CE.其中正确的是__________(写出正确结论的序号).
考点四、平移、旋转作图
【例4】如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,并写出点C2的坐标;
(3)将△A2B2C2平移得到△A3B3C3,使A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3(4,-1),在坐标系中画出△A3B3C3,并写出点A3,B3的坐标.
解:(1)如图,C1(-1,-3).
(2)如图,C2(3,1).
(3)如图,A3(2,-2),B3(2,-1).
一、选择题
1.在下列图形中,既是轴对称图形又是中心对称图形的是(  )
 
A.
B.
C.
D.
2.下列由数字组成的图形中,是轴对称图形的是(  ).
3.下列语句中正确的个数是(  ).
①关于一条直线对称的两个图形一定能重合②两个能重合的图形一定关于某条直线对称;
③一个轴对称图形不一定只有一条对称轴;④轴对称图形的对应点一定在对称轴的两侧.
A.1
B.2
C.3
D.4
4.已知等腰△ABC的周长为18
cm,BC=8
cm,则△ABC的腰长等于(  )
A.8
cm
B.2
cm或8
cm
C.5
cm
D.8
cm或5
cm
5.
如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,
则四边形ABFD的周长为(  )
 
A.
6
B.
8
C.
10
D.
12
6.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有(  )
 
A.
4种
B.
5种
C.
6种
D.
7种
7.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(  )
 
A.
55°
B.
70°
C.
125°
D.
145°
8.如图中,△ABC和△BDE是等边三角形,点A、B、D在一条直线上,并且AB=BD。由一个三角形变换到另一个三角形(
)。
仅能由平移得到;
B.仅能由旋转得到;
C.既能由平移得到,也能由旋转得到;
D.既不能由平移得到,也不能由旋转得到。
9.如图中,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了(
)。
A.75°
B.60°
C.45
D.15°
10.如图所示,Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中一定不相等的线段有(  ).
AC=AE=BE
B.AD=BD
C.CD=DE
D.AC=BD
11.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是(  ).
二、填空题
12.
正方形绕中心至少旋转
度后能与自身重合。
13.如图(1)直角三角形AOB顺时针旋转后与△COD重合,若∠AOD=127°,
则旋转角度是

14.如图(2),把大小相等的两个长方形拼成L形图案,则∠FCA=
度。
15.如图(3),已知△ABD沿BD平移到了△FCE的位置,BE=10,CD=4,
则平移的距离是

16如图4,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,
则∠PAQ的度数是__________.
17.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________。
18.如图5,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,
则∠C=_________.
19.如图6:三个圆是同心圆,圆中阴影部分的面积是 _________ .
三、解答题
20、如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:
(1)作出△ABC向左平移5格后得到的△A1B1C1;
(2)作出△ABC关于点O的中心对称图形△A2B2C2;
(3)求△A1B1C1的面积.
 
21.
如图,在下面的方格图中,将△ABC先向右平移四个单位得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2,请依次作出△A1B1C1和△A1B2C2.
 
22.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′为多少度?
23如图,△ABC是直角三角形,∠C=90°,将△ABC绕点A顺时针旋转90°。
(1)试画出旋转后的△DCE,其中B与D是对应点。
(2)在画出的图形中,已知AB=5,BC=3,求BE的长。
24.如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如果AF=
4,AB=7.
(1)写出图中的旋转过程;
(2)求BE的长
(3)在图中作出延长BE与DF的交点G,并说明BG⊥DF.
25.如图,P是等边△ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后,得到△P′AB。求:(1)PP′的长;
(2)∠APB的度数。
26.
如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B的度数.
27.
将一副直角三角板放置像图1那样,等腰直角三角板ACB的直角顶点A在直角三角板EDF的直角边DE上,点C、D、B、F在同一直线上,点D、B是CF的三等分点,CF=6,∠F=30°.
(1)三角板ACB固定不动,将三角板EDF绕点D逆时针旋转至EF∥CB(如图2),试求DF旋转的度数;点A在EF上吗?为什么?
(2)在图2的位置,将三角板EDF绕点D继续逆时针旋转15°.请问此时AC与DF有何位置关系?为什么?
 
一、图形的轴对称
1.定义
(1)轴对称:把________图形沿着某一条直线对折后,如果能与另一个图形________,那么就说这________图形成轴对称,这条直线就是________,两个图形中的对应点叫做__________.
(2)轴对称图形:把________图形沿某条直线对折,如果直线两旁的部分能够互相________,那么________叫做轴对称图形.这条直线就是它的对称轴.
2.性质
(1)对称点的连线被________垂直平分;
(2)对应线段相等,对应角相等;
(3)成轴对称的两个图形是全等图形.
二、图形的中心对称
1.定义
(1)中心对称:把一个图形绕着一点旋转________后,如果与另一个图形重合,那么这两个图形叫做关于这一点成中心对称,这个点叫做________,旋转前后的点叫做________.
(2)中心对称图形:把一个图形绕着某一点旋转180°后,能与原来位置的图形重合,这个图形叫做中心对称图形,这个点叫做对称中心.
2.性质
(1)关于某点成中心对称的两个图形是__________;
(2)关于某点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心______.
三、图形折叠问题
折叠问题是轴对称变换,折痕所在直线就是轴对称问题中的对称轴;应用时注意折叠所对应的图形,抓住它们之间的不变关系及其性质,寻找相等的量.
四、图形的平移
1.定义
在平面内,将一个图形沿__________移动一定的距离,图形的这种变换,叫做平移变换,简称______.确定一个平移变换的条件是________和________.
2.性质
(1)平移不改变图形的________与________,即平移前后的两个图形是__________;
(2)连接各组对应点的线段平行(或共线)且相等;
(3)对应线段平行(或共线)且相等;
(4)对应角相等.
五、图形的旋转
1.定义
在平面内,把一个平面图形绕着一个定点沿着________旋转一定的______,图形的这种变换,叫做旋转变换.这个定点叫做旋转中心,这个角度叫做________.图形的旋转由________和________所决定.
2.性质
(1)图形上的每一点都绕着________沿着相同的方向旋转了________大小的角度;
(2)旋转后的图形与原来的图形的形状和大小都没有发生变化,即它们是________的;
(3)旋转前后两个图形的对应点到旋转中心的________相等;
(4)对应点到旋转中心的连线所成的角相等,并且等于旋转角.
六、简单的平移作图与旋转作图
1.平移作图的步骤
(1)首先找出原图形中的关键点,如多边形的顶点,圆的圆心;
(2)根据平移的距离与方向,画出特殊点的对应点;
(3)顺次连接各对应点,就得到原图形平移后的图形.
2.旋转作图的步骤
(1)找出旋转中心与旋转角;
(2)找出构成图形的关键点;
(3)作出这些关键点旋转后的对应点;
(4)顺次连接各对应点.