第3章 数系的扩充与复数的引入
§3.1数系的扩充和复数的概念
§3.1.1数系的扩充和复数的概念
教学目标:
1. 知识与技能:了解引进复数的必要性;理解并掌握虚数的单位i
2. 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律
3. 情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念
教学重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用
教学难点:虚数单位i的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i并同时规定了它的两条性质之后,自然地得出的.在规定i的第二条性质时,原有的加、乘运算律仍然成立
教具准备:多媒体、实物投影仪
教学设想:生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.
教学过程:
学生探究过程:
数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N
随着生产和科学的发展,数的概念也得到发展
为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然NQ.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有ZQ、NZ.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集
有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集
因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数,叫做虚数单位.并由此产生的了复数
讲解新课:
1.虚数单位:
(1)它的平方等于-1,即 ;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.
2. 与-1的关系: 就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-!
3. 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=1
4.复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示*
3. 复数的代数形式: 复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式
4. 复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.
5.复数集与其它数集之间的关系:NZQRC.
6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等
这就是说,如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d
复数相等的定义是求复数值,在复数集中解方程的重要依据 一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小.
现有一个命题:“任何两个复数都不能比较大小”对吗?不对 如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小
例1请说出复数的实部和虚部,有没有纯虚数?
答:它们都是虚数,它们的实部分别是2,-3,0,-;虚部分别是3,,-,-;-i是纯虚数.
例2 复数-2i+3.14的实部和虚部是什么?
答:实部是3.14,虚部是-2.
易错为:实部是-2,虚部是3.14!
例3(课本例1)实数m取什么数值时,复数z=m+1+(m-1)i是:
(1)实数? (2)虚数? (3)纯虚数?
[分析]因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实数、虚数和纯虚数的条件可以确定m的值.
解:(1)当m-1=0,即m=1时,复数z是实数;
(2)当m-1≠0,即m≠1时,复数z是虚数;
(3)当m+1=0,且m-1≠0时,即m=-1时,复数z 是纯虚数.
例4 已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x与y.
解:根据复数相等的定义,得方程组,所以x=,y=4
巩固练习:
1.设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论正确的是( )
A.A∪B=C B. A=B C.A∩B= D.B∪B=C
2.复数(2x2+5x+2)+(x2+x-2)i为虚数,则实数x满足( )
A.x=- B.x=-2或- C.x≠-2 D.x≠1且x≠-2
3.已知集合M={1,2,(m2-3m-1)+(m2-5m-6)i},集合P={-1,3}.M∩P={3},则实数m的值为( )
A.-1 B.-1或4 C.6 D.6或-1
4.满足方程x2-2x-3+(9y2-6y+1)i=0的实数对(x,y)表示的点的个数是______.
5.复数z1=a+|b|i,z2=c+|d|i(a、b、c、d∈R),则z1=z2的充要条件是______.
6.设复数z=log2(m2-3m-3)+ilog2(3-m)(m∈R),如果z是纯虚数,求m的值.
7.若方程x2+(m+2i)x+(2+mi)=0至少有一个实数根,试求实数m的值.
8.已知m∈R,复数z=+(m2+2m-3)i,当m为何值时,
(1)z∈R; (2)z是虚数;(3)z是纯虚数;(4)z=+4i.
答案:1.D 2.D 3. 解析:由题设知3∈M,∴m2-3m-1+(m2-5m-6)i=3
∴,∴∴m=-1,故选A.
4. 解析:由题意知∴
∴点对有(3,),(-1,)共有2个.答案:2
5. 解析:z1=z2a=c且b2=d2.答案:a=c且b2=d2
6.解:由题意知∴
∴∴,∴m=-1.
7. 解:方程化为(x2+mx+2)+(2x+m)i=0.∴,
∴x=-,∴∴m2=8,∴m=±2.
8. 解:(1)m须满足解之得:m=-3.
(2)m须满足m2+2m-3≠0且m-1≠0,解之得:m≠1且m≠-3.
(3)m须满足解之得:m=0或m=-2.
(4)m须满足解之得:m∈
课后作业:课本第106页 习题3.1 1 , 2 , 3
教学反思:
这节课我们学习了虚数单位i及它的两条性质,复数的定义、实部、虚部及有关分类问题,复数相等的充要条件,复平面等等.基本思想是:利用复数的概念,联系以前学过的实数的性质,对复数的知识有较完整的认识,以及利用转化的思想将复数问题转化为实数问题
复数的概念如果单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的历史,让学生体会到数集的扩充是生产实践的需要,也是数学学科自身发展的需要;介绍数的概念的发展过程,使学生对数的形成、发展的历史和规律,各种数集中之间的关系有着比较清晰、完整的认识.从而让学生积极主动地建构虚数的概念、复数的概念、复数的分类导数与导函数的概念
教学目标:
1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法;
理解导数的几何意义;
理解导函数的概念和意义;
2、过程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程,培养转化问题的能力
3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美。
教学重点:
1、导数的求解方法和过程;2、导数符号的灵活运用
教学难点:
1、导数概念的理解;2、导函数的理解、认识和运用
教学过程:
一、情境引入
在前面我们解决的问题:
1、求函数在点(2,4)处的切线斜率。
,故斜率为4
2、直线运动的汽车速度V与时间t的关系是,求时的瞬时速度。
,故斜率为4
二、知识点讲解
上述两个函数和中,当()无限趋近于0时,()都无限趋近于一个常数。
归纳:一般的,定义在区间(,)上的函数,,当无限趋近于0时,无限趋近于一个固定的常数A,则称在处可导,并称A为在处的导数,记作或,
上述两个问题中:(1),(2)
三、几何意义:
我们上述过程可以看出
在处的导数就是在处的切线斜率。
四、例题选讲
例1、求下列函数在相应位置的导数
(1), (2),
(3),
例2、函数满足,则当x无限趋近于0时,
(1)
(2)
变式:设f(x)在x=x0处可导,
(3)无限趋近于1,则=___________
(4)无限趋近于1,则=________________
(5)当△x无限趋近于0,所对应的常数与的关系。
总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。
例3、若,求和
注意分析两者之间的区别。
例4:已知函数,求在处的切线。
导函数的概念涉及:的对于区间(,)上任意点处都可导,则在各点的导数也随x的变化而变化,因而也是自变量x的函数,该函数被称为的导函数,记作。
五、小结与作业§3.1.2复数的几何意义
教学目标:
知识与技能:理解复数与从原点出发的向量的对应关系
过程与方法:了解复数的几何意义
情感、态度与价值观:画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用
教学重点:复数与从原点出发的向量的对应关系.
教学难点:复数的几何意义。
教具准备:多媒体、实物投影仪。
教学设想:复数z=a+bi(a、b∈R)与有序实数对(a,b)是一一对应关系这是因为对于任何一个复数z=a+bi(a、b∈R),由复数相等的定义可知,可以由一个有序实数对(a,b)惟一确定.
教学过程:
学生探究过程:
1.若,,则
2. 若,,则,
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差
3. 若,,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标
即 ==( x2, y2) (x1,y1)= (x2 x1, y2 y1)
讲授新课:
复平面、实轴、虚轴:
复数z=a+bi(a、b∈R)与有序实数对(a,b)是一一对应关系这是因为对于任何一个复数z=a+bi(a、b∈R),由复数相等的定义可知,可以由一个有序实数对(a,b)惟一确定,如z=3+2i可以由有序实数对(3,2)确定,又如z=-2+i可以由有序实数对(-2,1)来确定;又因为有序实数对(a,b)与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴
实轴上的点都表示实数
对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z=0+0i=0表示是实数.故除了原点外,虚轴上的点都表示纯虚数
在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i,虚轴上的点(0,5)表示纯虚数5i
非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i,z=-5-3i对应的点(-5,-3)在第三象限等等.
复数集C和复平面内所有的点所成的集合是一一对应关系,即
复数复平面内的点
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.
这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.
1.复平面内的点平面向量
2. 复数平面向量
例1.(2007年辽宁卷)若,则复数在复平面内所对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
解:选B .
例2.(2003上海理科、文科)已知复数z1=cosθ-i,z2=sinθ+i,求| z1·z2|的最大值和最小值.
[解]
故的最大值为最小值为.
例3.(2004北京理科)满足条件的复数z在复平面上对应点的轨迹是( )
A. 一条直线 B. 两条直线 C. 圆 D. 椭圆
解:选C.
巩固练习:
课后作业:课本第106页 习题3. 1 A组4,5,6 B组1,2
教学反思:
复数集C和复平面内所有的点所成的集合是一一对应关系,即
复数复平面内的点
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.
这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.
1.(2000广东,全国文科、理科,江西、天津理科)在复平面内,把复数对
应的向量按顺时钟方向旋转,所得向量对应的复数是:( B )
(A)2 (B) (C) (D)3+
2. (1992全国理科、文科)已知复数z的模为2,则│z-i│的最大值为:( D )
(A)1 (B)2 (C) (D)3
3.(2003北京理科)若且的最小值是( B )
A.2 B.3 C.4 D.5
4.(2007年上海卷)若为非零实数,则下列四个命题都成立:
① ② ③若,则
④若,则则对于任意非零复数,上述命题仍然成立的序号是。
4.②,④
5.(2005上海文科)在复数范围内解方程(为虚数单位)。
【思路点拨】本题考查共轭复数的模的概念和运算能力,可根据复数的代数形式进行处理.
【解】原方程化简为,
设z=x+yi(x、y∈R),代入上述方程得 x2+y2+2xi=1-i,
∴x2+y2=1且2x=-1,解得x=-且y=±,
∴原方程的解是z=-±i.§1.2.1几个常用函数的导数
教学目标:
1.使学生应用由定义求导数的三个步骤推导四种常见函数、、、的导数公式;
2.掌握并能运用这四个公式正确求函数的导数.
教学重点:四种常见函数、、、的导数公式及应用
教学难点: 四种常见函数、、、的导数公式
教学过程:
一.创设情景
我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数,如何求它的导数呢?
由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数.
二.新课讲授
1.函数的导数
根据导数定义,因为
所以
函数 导数
表示函数图像(图3.2-1)上每一点处的切线的斜率都为0.若表示路程关于时间的函数,则可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.
2.函数的导数
因为
所以
函数 导数
表示函数图像(图3.2-2)上每一点处的切线的斜率都为1.若表示路程关于时间的函数,则可以解释为某物体做瞬时速度为1的匀速运动.
3.函数的导数
因为
所以
函数 导数
表示函数图像(图3.2-3)上点处的切线的斜率都为,说明随着的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当时,随着的增加,函数减少得越来越慢;当时,随着的增加,函数增加得越来越快.若表示路程关于时间的函数,则可以解释为某物体做变速运动,它在时刻的瞬时速度为.
4.函数的导数
因为
所以
函数 导数
(2)推广:若,则
三.课堂练习
1.课本P13探究1
2.课本P13探究2
4.求函数的导数
四.回顾总结
函数 导数
五.布置作业
1.3.2函数的极值与导数
【学习目标】
理解极小值,极大值,极值点,极值定义.
掌握求极小值和极大值的过程.
【知识点整理】
1.___________________________________________,我们把点叫做函数的极小值点,的极小值.
2.____________________________________________,我们把点叫做函数的极大值点,的极大值.
3.求函数的极值过程是:_________________________________________________.
4.注意极大值和极小值统称为极值,极值刻画的是函数的局部性质.
三.知识点实例探究
函数的定义域为R,导函数的图像如图所示,则函数
无极大值点,有四个极小值点
有三个极大值点,两个极小值点
有两个极大值点,两个极小值点
有四个极大值点,无极小值点
分别用二次函数和导数方法求的极小值.
求函数的极值.
【作业】
1.关于函数的极值,下列说法正确的是( )
导数为0的点一定是函数的极值点
函数的极小值一定小于它的极大值
在定义域内最多只能有一个极大值,一个极小值
若在内有极值,那么在内不是单调函数.
2.函数,已知在时取得极值,则( )
A.2 B.3 C.4 D.5
3.的极小值为( )
A.1 B.-1 C.0 D.不存在
4.有( )
A.极大值为5,极小值为-27 B.极大值为5,极小值为-11
C.极大值为5,无极小值 D.极大值为-27,无极小值
5.函数时有极值10,则的值为( )
A. B.
C. D.以上都不正确
6.若函数在内有极小值,则( )
A.0< B. C. D.
7.有极___值是____.
8.有极__值是_____
9.右图是导函数的图像,则函数的极大值点是____,极小值是_____-
10.求极大值
11.已知函数,当时,的极大值为7;当时,有极小值.求(1)的值
(2)函数的极小值.
自 助 餐
1.已知函数的图像与轴切与(1,0)点,则的极值为( )
A.极大值为,极小值为0. B.极大值为0,极小值为
C.极小值为_,极大值为0. D.极小值为0,极大值为_
2.设函数在处取得极大值,则
3.已知函数既有极大值又有极小值,则实数的取值范围是______________
4.已知是函数的一极值点,其中
求的关系表达式
求的单调区间.
5.求函数的极值,并结合单调性,极值作出该函数的图像.科目 数学 课题 §3.5对数函数与指数函数的导数
教材分析 重点 应用公式求简单的初等函数的导数
难点 公式的正确应用
疑点 涉及复合函数的求导问题时,如何进行分解
教学目标 知识目标 熟记的导数公式,并能求简单的初等函数的导数
能力目标 培养学生的运算能力,分析和解决问题的能力
情感目标 德育渗透点: 能用辨证的观点去认识规律刑的抽象的公式美育渗透点: 公式的简洁、抽象、应用的广泛灵活
学法引导 首先要熟记公式(不要求证明),并进行适当的练习巩固,能及时总结求某些复合函数导数的方法,做到正确使用相关法则,每一步都要有依据
课时安排 1课时 教法 启发式 教学设备 多媒体设备
教与学过程设计 具体见下
教学后记
第一课时 对数函数与指数函数的导数
【课时目标】 掌握对数函数、指数函数的求导法则,并能进行简单应用
【情景设置】
前面几节课我们学习了常数函数、幂函数、三角函数以及正余弦函数的求导法则,我们一起回顾一下。(回忆公式)
求下列几个函数的导数:
(1)y=sinx3+sin33x;(2)
【探索研究】
对数函数的导数
公式一
说明:此公式的记忆要点是:将x拿到对数前面并“倒”一下,原来x的地方换成“e”
练习1:求下列对数函数的导数(随手写出)
(1);(2)(3)(4)
例2 求
处理:例2放在第(3)题后讲解
公式二
例1 求的导数
处理:例题教师板演
练习2:求下列对数函数的导数(随手写出)
指数函数的导数
公式三
说明:指导学生记忆此公式,并说明a应为正数。
练习3:求下列指数函数的导数(随手写出)
(1)3x;(2)x3+3x;(3)a5x;(4)ex;
公式四
练习4:求下列指数函数的导数(随手写出)
(1)e3x;(2)x2ex;(3)e2xcos3x;(4)xne-x
练习5:求下列指数函数的导数(随手写出)
(1)y=exsinx;(2)y=exlnx
【求导小测】
求下列函数的导数
(1);(2);(3)
说明:一些复杂的求导问题基本为复合函数求导问题,按照复合函数的求导方法,首先要选好中间变量,然后应用基本导数公式就可以顺利求解了。
已知,求
说明:遇到绝对值时,先要对绝对值中因式进行讨论。(另解:)
求下列函数的导数
(1);(2);(3)
答案:();;secx
4.已知,求f(x)的导数的导数()
【作业】
习题3.5第1,2,3题§3.3.2函数的极值与导数(2课时)
教学目标:
1.理解极大值、极小值的概念;
2.能够运用判别极大值、极小值的方法来求函数的极值;
3.掌握求可导函数的极值的步骤;
教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤.
教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤.
教学过程:
一.创设情景
观察图3.3-8,我们发现,时,高台跳水运动员距水面高度最大.那么,函数在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?
放大附近函数的图像,如图3.3-9.可以看出;在,当时,函数单调递增,;当时,函数单调递减,;这就说明,在附近,函数值先增(,)后减(,).这样,当在的附近从小到大经过时,先正后负,且连续变化,于是有.
对于一般的函数,是否也有这样的性质呢?
附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号
二.新课讲授
1.问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
通过观察图像,我们可以发现:
运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.
从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.
如图3.3-3,导数表示函数在点处的切线的斜率.在处,,切线是“左下右上”式的,这时,函数在附近单调递增;在处,,切线是“左上右下”式的,这时,函数在附近单调递减.
结论:函数的单调性与导数的关系
在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.
说明:(1)特别的,如果,那么函数在这个区间内是常函数.
3.求解函数单调区间的步骤:
(1)确定函数的定义域;
(2)求导数;
(3)解不等式,解集在定义域内的部分为增区间;
(4)解不等式,解集在定义域内的部分为减区间.
三.典例分析
例1.已知导函数的下列信息:
当时,;
当,或时,;
当,或时,
试画出函数图像的大致形状.
解:当时,,可知在此区间内单调递增;
当,或时,;可知在此区间内单调递减;
当,或时,,这两点比较特殊,我们把它称为“临界点”.
综上,函数图像的大致形状如图3.3-4所示.
例2.判断下列函数的单调性,并求出单调区间.
(1); (2)
(3); (4)
解:(1)因为,所以,
因此,在R上单调递增,如图3.3-5(1)所示.
(2)因为,所以,
当,即时,函数单调递增;
当,即时,函数单调递减;
函数的图像如图3.3-5(2)所示.
因为,所以,
因此,函数在单调递减,如图3.3-5(3)所示.
因为,所以 .
当,即 时,函数 ;
当,即 时,函数 ;
函数的图像如图3.3-5(4)所示.
注:(3)、(4)生练
如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像.
分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.
解:
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.如图3.3-7所示,函数在或内的图像“陡峭”,在或内的图像“平缓”.
求证:函数在区间内是减函数.
证明:因为
当即时,,所以函数在区间内是减函数.
说明:证明可导函数在内的单调性步骤:
(1)求导函数;
(2)判断在内的符号;
(3)做出结论:为增函数,为减函数.
已知函数 在区间上是增函数,求实数的取值范围.
解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:
所以实数的取值范围为.
说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解.
四.课堂练习
1.求下列函数的单调区间
1.f(x)=2x3-6x2+7 2.f(x)=+2x
3. f(x)=sinx , x 4. y=xlnx
2.课本P101练习
五.回顾总结
(1)函数的单调性与导数的关系
(2)求解函数单调区间
(3)证明可导函数在内的单调性
六.布置作业1.2.1几个常用函数的导数以及基本初等函数的导数公式
班级_______________ 姓名_____________________
学习目标:1.能根据导数定义,求函数的导数;2.熟记基本初等函数的导数公式.
复习回顾:1.函数在处的导数定义为________________________;
2 .导数的几何意义和物理意义分别是什么
知识点:导函数的概念:若函数在处的导数存在,则称函数在是可导的.如果在开区间内每一点都是可导的,则称在区间可导.这样,对开区间内每一个值,都对应一个确定的导数.于是,在区间内,构成一个新的函数,我们把这个函数称为函数的导函数.记为或(或).导函数通常简称为导数.今后,如果不特别指明求某一点的导数,那么求导数就是求导函数.
例证题:
例1.根据导数的定义求下列函数的导数,并说明(1)(2)所求结果的几何意义和物理意义.(1) (1)(为常数); (2)
(3) (4)
(5) (6)
以上结果即为(2)=_______;(3)=___________;(4) = _____________;
(5) =______________;(6) =______________.
由此,我们可以推测,对任意幂函数,当时,都有=_______________.
例2.画出函数和的图象,结合图象以及例1中所求结果,分别描述它们的变化情况.
例3.利用上述结论,求下列函数的导数:
(1) (2) (3) (4)
例4.求曲线(1)在点(1,1)处的切线方程;(2)求曲线过点(2,3)的切线方程.
作业:
1.熟记教材第14页基本初等函数的导数公式,并默写如下:
2.函数的导数是________________.
3.函数在处的导数为_______;
4.物体的运动方程为,则物体在时的瞬时速度为______.
5.给出下列命题,其中正确的命题是___________________(填序号)
(1)任何常数的导数都为零;(2)直线上任一点处的切线方程是这条直线本身;
(3)双曲线上任意一点处的切线斜率都是赋值;
(4)函数和函数在(上函数值增长的速度一样快.
6.函数在处的切线方程为________________________________.
7.函数的导数为( )
A. B. C. D.
8.函数的导数为( )
A. B. C. D.
9.求三次曲线过点(2,8)的切线方程.
10.求证两曲线和在点处的切线互相垂直.
11.某小型企业最初在年初投资10000元生产某种产品,在今后10年内估计资金年平均增长率为50%。问第5年末该企业的资金增长速度大约是每年多少万元?(精确到0.01)
12.过点作曲线的切线,求此切线的方程.§1.3.1函数的单调性与导数(2课时)
教学目标:
1.了解可导函数的单调性与其导数的关系;
2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次;
教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
教学难点: 利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
教学过程:
一.创设情景
函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用.
二.新课讲授
1.问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度随时间变化的函数的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?
通过观察图像,我们可以发现:
运动员从起点到最高点,离水面的高度随时间的增加而增加,即是增函数.相应地,.
从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数.相应地,.
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.
如图3.3-3,导数表示函数在
点处的切线的斜率.
在处,,切线是“左下右上”式的,
这时,函数在附近单调递增;
在处,,切线是“左上右下”式的,
这时,函数在附近单调递减.
结论:函数的单调性与导数的关系
在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减.
说明:(1)特别的,如果,那么函数在这个区间内是常函数.
3.求解函数单调区间的步骤:
(1)确定函数的定义域;
(2)求导数;
(3)解不等式,解集在定义域内的部分为增区间;
(4)解不等式,解集在定义域内的部分为减区间.
三.典例分析
例1.已知导函数的下列信息:
当时,;
当,或时,;
当,或时,
试画出函数图像的大致形状.
解:当时,,可知在此区间内单调递增;
当,或时,;可知在此区间内单调递减;
当,或时,,这两点比较特殊,我们把它称为“临界点”.
综上,函数图像的大致形状如图3.3-4所示.
例2.判断下列函数的单调性,并求出单调区间.
(1); (2)
(3); (4)
解:(1)因为,所以,
因此,在R上单调递增,如图3.3-5(1)所示.
(2)因为,所以,
当,即时,函数单调递增;
当,即时,函数单调递减;
函数的图像如图3.3-5(2)所示.
(3)因为,所以,
因此,函数在单调递减,如图3.3-5(3)所示.
(4)因为,所以 .
当,即 时,函数 ;
当,即 时,函数 ;
函数的图像如图3.3-5(4)所示.
注:(3)、(4)生练
如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度与时间的函数关系图像.
分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.
解:
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,
那么函数在这个范围内变化的快,
这时,函数的图像就比较“陡峭”;
反之,函数的图像就“平缓”一些.
如图3.3-7所示,函数在或内的图像“陡峭”,
在或内的图像“平缓”.
求证:函数在区间内是减函数.
证明:因为
当即时,,所以函数在区间内是减函数.
说明:证明可导函数在内的单调性步骤:
(1)求导函数;
(2)判断在内的符号;
(3)做出结论:为增函数,为减函数.
已知函数 在区间上是增函数,求实数的取值范围.
解:,因为在区间上是增函数,所以对恒成立,即对恒成立,解之得:
所以实数的取值范围为.
说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则;若函数单调递减,则”来求解,注意此时公式中的等号不能省略,否则漏解.
四.课堂练习
1.求下列函数的单调区间
1.f(x)=2x3-6x2+7 2.f(x)=+2x 3. f(x)=sinx , x 4. y=xlnx
2.课本 练习
五.回顾总结
(1)函数的单调性与导数的关系
(2)求解函数单调区间
(3)证明可导函数在内的单调性
六.布置作业1.5.3定积分的概念
【学习目标】
了解定积分的概念,会通过四步曲求连续函数的定积分;
了解定积分的几何意义及性质.
【复习回顾】
1.用四步曲--------------------------求得曲边梯形得面积S=____________________________
2.用四步曲求得变速运动得路程S=_____________________________.
【知识点实例探究】
函数在区间上连续,如同曲边梯形面积得四步曲求法写出运算过程.
上述和式无限接近某个常数,这个常数叫做函数在区间上得定积分,记做),定积分的几何意义是:______________________________-
__________________________________________________________________________-.
例2.计算下列定积分的值,并从几何上解释这个值表示什么 ()
(1) (2)
(3) (4)
例3.利用定积分的几何意义说明的大小.
例4.利用定积分的定义,证明,其中均为常数且.
【作业】
设连续函数,则当时,定积分的符号________
A.一定是正的 B.一定是负的
C.当时是正的 D.以上都不对
与定积分相等的是_________
A. B.
C.- D.
定积分的的大小_________
与和积分区间有关,与的取法无关.
与有关,与区间以及的取法无关
与以及的取法有关,与区间无关
与以及的取法和区间都有关
下列等式成立的是________
A. B.
C. D.
已知=6,则
已知,则=______________
已知则___________
计算
计算
10.课本56页B组.3§1.2.2复合函数的求导法则
教学目标 理解并掌握复合函数的求导法则.
教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积.
教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确.
一.创设情景
(一)基本初等函数的导数公式表
函数 导数
(二)导数的运算法则
导数运算法则
1.2.3.
(2)推论:
(常数与函数的积的导数,等于常数乘函数的导数)
二.新课讲授
复合函数的概念 一般地,对于两个函数和,如果通过变量,可以表示成的函数,那么称这个函数为函数和的复合函数,记作。
复合函数的导数 复合函数的导数和函数和的导数间的关系为,即对的导数等于对的导数与对的导数的乘积.
若,则
三.典例分析
例1求y =sin(tan x2)的导数.
【点评】
求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果.
例2求y =的导数.
【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理.
例3求y =sin4x +cos 4x的导数.
【解法一】y =sin 4x +cos 4x=(sin2x +cos2x)2-2sin2cos2x=1-sin22 x
=1-(1-cos 4 x)=+cos 4 x.y′=-sin 4 x.
【解法二】y′=(sin 4 x)′+(cos 4 x)′=4 sin 3 x(sin x)′+4 cos 3x (cos x)′=4 sin 3 x cos x +4 cos 3 x (-sin x)=4 sin x cos x (sin 2 x -cos 2 x)=-2 sin 2 x cos 2 x=-sin 4 x
【点评】
解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步.
例4曲线y =x(x +1)(2-x)有两条平行于直线y =x的切线,求此二切线之间的距离.
【解】y =-x 3 +x 2 +2 x y′=-3 x 2+2 x +2
令y′=1即3 x2-2 x -1=0,解得 x =-或x =1.
于是切点为P(1,2),Q(-,-),
过点P的切线方程为,y -2=x -1即 x -y +1=0.
显然两切线间的距离等于点Q 到此切线的距离,故所求距离为=.
四.课堂练习
1.求下列函数的导数 (1) y =sinx3+sin33x;(2);(3)
2.求的导数
五.回顾总结
六.布置作业1.5.1,1.5.2曲边梯形的面积和汽车行驶的路程
班级_________________姓名________________________
【学习目标】
1.理解连续函数的概念,会根据函数图象观察函数在区间上是否连续.
2.会用分割,近似替代,求和,取极限的方法求曲边为二次函数曲线段的曲边梯形的面积和汽车作变速运动时在某一段时间内行驶的路程.
3.通过求曲边梯形的面积和对变速直线运动在某一段时间内行驶路程的求法,体会“以直代曲”和“以不变代变”的思想方法.
【复习回顾】
1.,
=_____________.
2.在“割圆术”中, 是如何利用正多边形的面积得到圆的面积的 具体步骤如何
【知识点实例探究】
例1: 已知由直线和曲线所围成的曲边梯形.将区间[0,3]等分,取第个小区间的右端点处的函数值为第个小矩形的高.
(1)当时,求曲边梯形面积的近似值;(2) 当时,求曲边梯形面积的近似值;(3)当时,求曲边梯形面积的近似值;(4) 当时,求曲边梯形面积的近似值;(5)求曲边梯形的面积.
例2:一辆汽车在笔直的公路上变速行使,设汽车在时刻的速度为(单位,求它在(单位:)这段时间内行使的路程(单位:).
【作业】
1.下列函数在其定义域上不是连续函数的是( )
A. B. C. D.
2.把区间[1,3]等分,所得个小区间,每个小区间的长度为( )
A. B. C. D.
3.把区间等分后,第个小区间是( )
A. B.
C. D.
4.在“近似替代”中,函数在区间上的近似值( )
A.只能是左端点的函数值 B.只能是右端点的函数值
C.可以是该区间内的任一函数值) D.以上答案均正确
5.汽车以(函数在上为连续函数)在笔直的公路上行使,在内经过的路程为,下列说法中正确的是____________.
(1)将等分,若以每个小区间左端点的速度近似替代时,求得的是的不足近似值();(2)将等分,若以每个小区间右端点的速度近似替代时,求得的是的过剩近似值();(3)将等分,当很大时,求出的就是的准确值;(4)的准确值就是由直线和曲线所围成的图形的面积.
6.一质点在作直线运动时,其速度(单位:),则此质点在区间_________内作加速度越来越____的变加速运动; 在区间___________内作速度为____匀速运动;在区间___________内作加速度大小为________的匀_______速运动;这一质点在这13内的运动路程为_______________.
7.一辆汽车在司机猛踩刹车后5内停下.在这一刹车过程中,下面各速度值被记录了下来:
刹车踩下后的时间() 0 1 2 3 4 5
速度() 27 18 12 7 3 0
求刹车踩下后汽车滑过的距离的不足近似值(每个均取小区间的右端点)与过剩近似值(每个均取小区间的左端点).
8. 求由直线和抛物线所围成的图形的面积.
9.一辆汽车在笔直的公路上变速行使,设汽车在时刻的速度为(单位,求它在(单位:)这段时间内行使的路程(单位:).§3.2复数代数形式的四则运算
§3.2.1复数代数形式的加减运算及几何意义
教学目标:
知识与技能:掌握复数的加法运算及意义
过程与方法:理解并掌握实数进行四则运算的规律,了解复数加减法运算的几何意义
情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念;画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用
教学重点:复数加法运算,复数与从原点出发的向量的对应关系.
教学难点:复数加法运算的运算率,复数加减法运算的几何意义。
教具准备:多媒体、实物投影仪 。
教学设想:复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。复数z=a+bi(a、b∈R)与有序实数对(a,b)是一一对应关系这是因为对于任何一个复数z=a+bi(a、b∈R),由复数相等的定义可知,可以由一个有序实数对(a,b)惟一确定.
教学过程:
学生探究过程:
1.虚数单位:(1)它的平方等于-1,即 ; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
2. 与-1的关系: 就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-
3. 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=1
4.复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示*
3. 复数的代数形式: 复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式
4. 复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.
5.复数集与其它数集之间的关系:NZQRC.
6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d
一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小
7. 复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴
实轴上的点都表示实数
对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z=0+0i=0表示是实数.故除了原点外,虚轴上的点都表示纯虚数
复数集C和复平面内所有的点所成的集合是一一对应关系,即
复数复平面内的点
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.
这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法
8.若,,则
9. 若,,则,
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差
10. 若,,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标
即 ==( x2, y2) (x1,y1)= (x2 x1, y2 y1)
讲解新课:
一.复数代数形式的加减运算
1.复数z1与z2的和的定义:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.
2. 复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.
3. 复数的加法运算满足交换律: z1+z2=z2+z1.
证明:设z1=a1+b1i,z2=a2+b2i(a1,b1,a2,b2∈R).
∵z1+z2=(a1+b1i)+(a2+b2i)=(a1+a2)+(b1+b2)i.
z2+z1=(a2+b2i)+(a1+b1i)=(a2+a1)+(b2+b1)i.
又∵a1+a2=a2+a1,b1+b2=b2+b1.
∴z1+z2=z2+z1.即复数的加法运算满足交换律.
4. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3)
证明:设z1=a1+b1i.z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).
∵(z1+z2)+z3=[(a1+b1i)+(a2+b2i)]+(a3+b3i)
=[(a1+a2)+(b1+b2)i]+(a3+b3)i
=[(a1+a2)+a3]+[(b1+b2)+b3]i
=(a1+a2+a3)+(b1+b2+b3)i.
z1+(z2+z3)=(a1+b1i)+[(a2+b2i)+(a3+b3i)]
=(a1+b1i)+[(a2+a3)+(b2+b3)i]
=[a1+(a2+a3)]+[b1+(b2+b3)]i
=(a1+a2+a3)+(b1+b2+b3)i
∵(a1+a2)+a3=a1+(a2+a3),(b1+b2)+b3=b1+(b2+b3).
∴(z1+z2)+z3=z1+(z2+z3).即复数的加法运算满足结合律
讲解范例:
例1计算:(5-6i)+(-2-i)-(3+4i)
解:(5-6i)+(-2-i)-(3+4i)=(5-2-3)+(-6-1-4) i=-11 i
例2计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2002+2003i)+(2003-2004i)
解法一:原式=(1-2+3-4+…-2002+2003)+(-2+3-4+5+…+2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i.
解法二:∵(1-2i)+(-2+3i)=-1+i,
(3-4i)+(-4+5i)=-1+i,
……
(2001-2002i)+(-2002+2003)i=-1+i.
相加得(共有1001个式子):
原式=1001(-1+i)+(2003-2004i)
=(2003-1001)+(1001-2004)i=1002-1003i
二.复数代数形式的加减运算的几何意义
复数的加(减)法 (a+bi)±(c+di)=(a±c)+(b±d)i.
与多项式加(减)法是类似的.就是把复数的实部与实部,虚部与虚部分别相加(减).
1.复平面内的点平面向量
2. 复数平面向量
3.复数加法的几何意义:
设复数z1=a+bi,z2=c+di,在复平面上所对应的向量为、,即、的坐标形式为=(a,b),=(c,d)以、为邻边作平行四边形OZ1ZZ2,则对角线OZ对应的向量是,
∴= +=(a,b)+(c,d)=(a+c,b+d)=(a+c)+(b+d)i
4. 复数减法的几何意义:复数减法是加法的逆运算,设z=(a-c)+(b-d)i,所以z-z1=z2,z2+z1=z,由复数加法几何意义,以为一条对角线,为一条边画平行四边形,那么这个平行四边形的另一边OZ2所表示的向量就与复数z-z1的差(a-c)+(b-d)i对应由于,所以,两个复数的差z-z1与连接这两个向量终点并指向被减数的向量对应.
例3已知复数z1=2+i,z2=1+2i在复平面内对应的点分别为A、B,求对应的复数z,z在平面内所对应的点在第几象限?
解:z=z2-z1=(1+2i)-(2+i)=-1+i,
∵z的实部a=-1<0,虚部b=1>0,
∴复数z在复平面内对应的点在第二象限内.
点评:任何向量所对应的复数,总是这个向量的终点所对应的复数减去始点所对应的复数所得的差. 即所表示的复数是zB-zA. ,而所表示的复数是zA-zB,故切不可把被减数与减数搞错尽管向量的位置可以不同,只要它们的终点与始点所对应的复数的差相同,那么向量所对应的复数是惟一的,因此我们将复平面上的向量称之自由向量,即它只与其方向和长度有关,而与位置无关
例4 复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.
分析一:利用,求点D的对应复数.
解法一:设复数z1、z2、z3所对应的点为A、B、C,正方形的第四个顶点D对应的复数为x+yi(x,y∈R),是:
=(x+yi)-(1+2i)=(x-1)+(y-2)i;
=(-1-2i)-(-2+i)=1-3i.
∵,即(x-1)+(y-2)i=1-3i,
∴解得
故点D对应的复数为2-i.
分析二:利用原点O正好是正方形ABCD的中心来解.
解法二:因为点A与点C关于原点对称,所以原点O为正方形的中心,于是(-2+i)+
(x+yi)=0,∴x=2,y=-1.
故点D对应的复数为2-i.
点评:根据题意画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用
巩固练习:
1.已知复数z1=2+i,z2=1+2i,则复数z=z2-z1在复平面内所表示的点位于
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.在复平面上复数-3-2i,-4+5i,2+i所对应的点分别是A、B、C,则平行四边形ABCD的对角线BD所对应的复数是
A.5-9i B.-5-3i C.7-11i D.-7+11i
3.已知复平面上△AOB的顶点A所对应的复数为1+2i,其重心G所对应的复数为1+i,则以OA、OB为邻边的平行四边形的对角线长为
A.3 B.2 C.2 D.
4.复平面上三点A、B、C分别对应复数1,2i,5+2i,则由A、B、C所构成的三角形是
A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形
5.一个实数与一个虚数的差( )
A.不可能是纯虚数 B.可能是实数
C.不可能是实数 D.无法确定是实数还是虚数
6.计算(-=____.
7.计算:(2x+3yi)-(3x-2yi)+(y-2xi)-3xi=________(x、y∈R).
8.计算(1-2i)-(2-3i)+(3-4i)-…-(2002-2003i).
9.已知复数z1=a2-3+(a+5)i,z2=a-1+(a2+2a-1)i(a∈R)分别对应向量、(O为原点),若向量对应的复数为纯虚数,求a的值.
解:对应的复数为z2-z1,则
z2-z1=a-1+(a2+2a-1)i-[a2-3+(a+5)i]=(a-a2+2)+(a2+a-6)i
∵z2-z1是纯虚数
∴ 解得a=-1.
10.已知复平面上正方形的三个顶点是A(1,2)、B(-2,1)、C(-1,-2),求它的第四个顶点D对应的复数.
解:设D(x,y),则
对应的复数为(x+yi)-(1+2i)=(x-1)+(y-2)i
对应的复数为:(-1-2i)-(-2+i)=1-3i
∵ ∴(x-1)+(y-2)i=1-3i
∴,解得
∴D点对应的复数为2-i。
答案:1.B 2.C 3.A 4.A 5.C 6.-2i 7.(y-x)+5(y-x)i
8.解:原式=(1-2+3-4+…+2001-2002)+(-2+3-4+…-2002+2003)i
=-1001+1001i
课后作业:课本第112页 习题3.2 1 , 2 , 3
教学反思:
如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d
一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小
复数的加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i(a,b,c,d∈R). 复数的加法,可模仿多项式的加法法则计算,不必死记公式。
复数加法的几何意义:如果复数z1,z2分别对应于向量、,那么,以OP1、OP2为两边作平行四边形OP1SP2,对角线OS表示的向量就是z1+z2的和所对应的向量 复数减法的几何意义:两个复数的差z-z1与连接这两个向量终点并指向被减数的向量对应.
例2图1.1.3 导数的几何意义
班级:____________姓名:_____________学号:___________
【学习目标】 1.通过作函数图像上过点的割线和切线,直观感受由割线过渡到切线的变化过程。
2.掌握函数在某一处的导数的几何意义,进一步理解导数的定义。
3.会利用导数求函数曲线上某一点的切线方程。
一、知识要点填空:
1.对于函数的曲线上的定点和动点,直线称为这条函数曲线上过点的一条__________;其斜率=_________________;当时,直线就无限趋近于一个确定的位置,这个确定位置的直线PT称为过P点的__________;其斜率=________________=___________________(其中),切线方程为________________________________;过函数曲线上任意一点的切线最多有__________条,而割线可以作_______条。
2.函数的平均变化率的几何意义是___________________________;函数的导数的几何意义是______________________________。
3.当函数在处的导数,函数在附近的图像自左而右是__________的,并且的值越大,图像上升的就越________;当函数在处的导数,函数在附近的图像自左而右是__________的,并且的值越小,图像下降的就越________;,函数在附近几乎______________________。
二、知识点实例探究:
如图(见课本.5),试描述函数在附近的变化情况。
变式 根据下列条件,分别画出函数图像在这点附近的大致形状:
(1);(2);(3)。
例2.如图(见课本.6)已知函数的图像,试画出其导函数图像的大致形状。
变式:根据下面的文字叙述,画出相应的路程关于时间的函数图像的大致形状。
(1)汽车在笔直的公路上匀速行驶;
(2)汽车在笔直的公路上不断加速行驶;
(3)汽车在笔直的公路上不断减速行驶;
例3.已知曲线上的一点,求(1)点P处切线的斜率;(2)点P处的切线方程。
变式:已知曲线,求与直线垂直,并与该曲线相切的直线方程。
作业:1.曲线在处的( )
A 切线斜率为1 B 切线方程为 C 没有切线 D 切线方程为
2.已知曲线上的一点A(2,8),则点A处的切线斜率为( )
A 4 B 16 C 8 D 2
3.函数在处的导数的几何意义是( )
A 在点处的函数值
B 在点处的切线与轴所夹锐角的正切值
C 曲线在点处的切线的斜率
D 点与点(0,0)连线的斜率
4.已知曲线上过点(2,8)的切线方程为,则实数的值为( )
A -1 B 1 C -2 D 2
5.若,则=( )
A -3 B -6 C -9 D -12
6.设为可导函数,且满足条件,则曲线在点
(1,1)处的切线的斜率为( )
A 2 B -1 C D -2
7. 已知曲线上的两点A(2,3),,当时,割线AB的斜率是__________,当时,割线AB的斜率是__________,曲线在点A处的切线方程是________________________。
8..如果函数在处的切线的倾斜角是钝角,那么函数在附近的变化情况是__________________。
9.在曲线上过哪一点的切线,(1)平行于直线;
(2)垂直于直线;(3)与轴成的倾斜角;
(4)求过点R(1,-3)与曲线相切的直线。
自 助 餐
1.一木块沿某一平面自由下滑,测得下滑的水平距离与时间之间的函数关系为,则秒时,此木块在水平方向上的瞬时速度为( )
A 2 B 1 C D
2. 已知曲线上一点P,则过点P的切线的倾斜角为( )
A B C D
3.曲线在P点处的切线平行于直线,则此切线方程为( )
A B C D 或
4.已知曲线在点P(1,4)处的切线与直线平行且距离为,则直线的方程为( )
A 或 B
C 或 D 以上都不对
5.曲线与在他们交点处的两条切线与轴所围成的三角形的面积为_______。
6.曲线在点处的切线与轴、直线所围成的三角形的面积为,则的值为___________。
7.已知曲线。
(1)求曲线C上横坐标为1的点处的切线的方程;
(2)第(1)小题中的切线与C是否还有其它的公共点。
8.已知曲线上两点。
求:(1)曲线在P点、Q点处的切线的斜率;
(2)曲线在P、Q点的切线方程。
9.已知点M(0,-1),F(0,1),过点M的直线与曲线在处的切线平行。
(1)求直线的方程;(2)求以点F为焦点,为准线的抛物线C的方程。
10.判断下列函数在的切线是否存在,若存在,求出切线方程,否则说明理由。
(1);(2);(3);(4)。
1-4 CBDC 5. 6. 7.(1)(2)有 8.(1)在P、Q两点的斜率分别为1,;(2)在P处的切线方程为;(2)在Q处的切线方程为。9.(1);(2);10(1);(2)在处不可导,但切线为;(3)在处不可导,没有切线;(4)在处不可导,但切线为。§1.1.3导数的几何意义
教学目标:
1.了解平均变化率与割线斜率之间的关系;
2.理解曲线的切线的概念;
3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题;
教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;
教学难点:导数的几何意义.
教学过程:
一.创设情景
(一)平均变化率、割线的斜率
(二)瞬时速度、导数
我们知道,导数表示函数y=f(x)在x=x0处的瞬时变化率,反映了函数y=f(x)在x=x0附近的变化情况,导数的几何意义是什么呢?
二.新课讲授
(一)曲线的切线及切线的斜率:如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?
我们发现,当点沿着曲线无限接近点P即Δx→0时,割线趋近于确定的位置,这个确定位置的直线PT称为曲线在点P处的切线.
问题:⑴割线的斜率与切线PT的斜率有什么关系?
⑵切线PT的斜率为多少?
容易知道,割线的斜率是,当点沿着曲线无限接近点P时,无限趋近于切线PT的斜率,即
说明:(1)设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.
这个概念: ①提供了求曲线上某点切线的斜率的一种方法;
②切线斜率的本质—函数在处的导数.
(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.
(二)导数的几何意义:
函数y=f(x)在x=x0处的导数等于在该点处的切线的斜率,
即
说明:求曲线在某点处的切线方程的基本步骤:
①求出P点的坐标;
②求出函数在点处的变化率 ,得到曲线在点的切线的斜率;
③利用点斜式求切线方程.
(二)导函数:
由函数f(x)在x=x0处求导数的过程可以看到,当时, 是一个确定的数,那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.记作:或,
即:
注:在不致发生混淆时,导函数也简称导数.
(三)函数在点处的导数、导函数、导数 之间的区别与联系。
1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。
2)函数的导数,是指某一区间内任意点x而言的, 就是函数f(x)的导函数
3)函数在点处的导数就是导函数在处的函数值,这也是 求函数在点处的导数的方法之一。
三.典例分析
例1:(1)求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
(2)求函数y=3x2在点处的导数.
解:(1),
所以,所求切线的斜率为2,因此,所求的切线方程为即
(2)因为
所以,所求切线的斜率为6,因此,所求的切线方程为即
(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数.
解:
例2.(课本例2)如图3.1-3,它表示跳水运动中高度随时间变化的函数
,根据图像,请描述、比较曲线在、、附近的变化情况.
解:我们用曲线在、、处的切线,刻画曲线在上述三个时刻附近的变化情况.
当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降.
当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.
从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢.
例3.(课本例3)如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)变化的图象.根据图像,估计时,血管中药物浓度的瞬时变化率(精确到).
解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,从图像上看,它表示曲线在此点处的切线的斜率.
如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值.
作处的切线,并在切线上去两点,如,,则它的斜率为:
所以
下表给出了药物浓度瞬时变化率的估计值:
0.2 0.4 0.6 0.8
药物浓度瞬时变化率 0.4 0 -0.7 -1.4
四.课堂练习
1.求曲线y=f(x)=x3在点处的切线;
2.求曲线在点处的切线.
五.回顾总结
1.曲线的切线及切线的斜率;
2.导数的几何意义
六.布置作业
图3.1-2§1.1.2导数的概念
教学目标:
1.了解瞬时速度、瞬时变化率的概念;
2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;
3.会求函数在某点的导数
教学重点:瞬时速度、瞬时变化率的概念、导数的概念;
教学难点:导数的概念.
教学过程:
一.创设情景
(一)平均变化率
(二)探究:计算运动员在这段时间里的平均速度,并思考以下问题:
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,,
所以,
虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.
二.新课讲授
1.瞬时速度
我们把物体在某一时刻的速度称为瞬时速度。运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,时的瞬时速度是多少?考察附近的情况:
思考:当趋近于0时,平均速度有什么样的变化趋势?
结论:当趋近于0时,即无论从小于2的一边,还是从大于2的一边趋近于2时,平均速度都趋近于一个确定的值.
从物理的角度看,时间间隔无限变小时,平均速度就无限趋近于史的瞬时速度,因此,运动员在时的瞬时速度是
为了表述方便,我们用
表示“当,趋近于0时,平均速度趋近于定值”
小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。
2 导数的概念
从函数y=f(x)在x=x0处的瞬时变化率是:
我们称它为函数在出的导数,记作或,即
说明:(1)导数即为函数y=f(x)在x=x0处的瞬时变化率
(2),当时,,所以
三.典例分析
例1.(1)求函数y=3x2在x=1处的导数.
分析:先求Δf=Δy=f(1+Δx)-f(1)=6Δx+(Δx)2
再求再求
解:法一(略)
法二:
(2)求函数f(x)=在附近的平均变化率,并求出在该点处的导数.
解:
例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第时,原油的温度(单位:)为,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义.
解:在第时和第时,原油温度的瞬时变化率就是和
根据导数定义,
所以
同理可得:
在第时和第时,原油温度的瞬时变化率分别为和5,说明在附近,原油温度大约以的速率下降,在第附近,原油温度大约以的速率上升.
注:一般地,反映了原油温度在时刻附近的变化情况.
四.课堂练习
1.质点运动规律为,求质点在的瞬时速度为.
2.求曲线y=f(x)=x3在时的导数.
3.例2中,计算第时和第时,原油温度的瞬时变化率,并说明它们的意义.
五.回顾总结
1.瞬时速度、瞬时变化率的概念
2.导数的概念
六.布置作业
h
t
o科目 数学 课题 §3.1导数的概念
教材分析 重点 导数的定义与求导数的方法
难点 理解导数的概念
疑点 导数与极限的联系,导数在实际问题中有什么应用,函数的连续性与可导性的关系,可通过举例说明(如:y=|x|在点x=0处连续,但不可导)
教学目标 知识目标 了解导数概念的某些实际背景(如光滑曲线的切线斜率、瞬时速度等);掌握函数在一点处的导数定义和导数的几何意义;理解导函数的概念。
能力目标 知识迁移应用能力,运用所学的极限定义理解导数的概念,抽象概括能力,分析实际问题中存在的数学关系,抽象提炼产生新的数学概念的能力,直觉思维能力。
情感目标 德育渗透点: 运动的观点,辨证地看问题;数学来源于生活,数学理论来源于时间的辨证唯物主义观点。美育渗透点:感受数学的创造美,内容的和谐美
学法引导 在学习时多从物理和几何方面,借助于图形直观帮助对概念的理解。
课时安排 2课时 教法 启发式 教学设备 多媒体设备
教与学过程设计 具体见下
教学后记
第一课时 导数的背景:曲线的切线与瞬时速度
【课时目标】 理解函数的增量与自变量的增量的比的极限的具体意义
【引入探索】
圆的切线
直线和圆有惟一公共点时,叫做直线和圆相切。这时直线叫做圆的切线,惟一的公共点叫做切点。
问题:能不能把圆的切线推广为一般曲线的切线呢?(请学生说出推广的结果后,教师引导学生加以剖析)。
曲线的切线
1)观察图形得出:相切可能不止一个交点,有惟一交点的也不一定是相切。所以对于一般的曲线,必须重新寻求曲线切线的定义。
2)作图,按书上讲解,再用几何画板演示一次。
3)一般地,已知函数的图象是曲线C,P(),Q()是曲线C上的两点,当点Q沿曲线逐渐向点P接近时,割线PQ绕着点P转动. 当点Q沿着曲线无限接近点P,即趋向于0时,如果割线PQ无限趋近于一个极限位置PT,那么直线PT叫做曲线在点P处的切线. 此时,割线PQ的斜率无限趋近于切线PT的斜率k,也就是说,当趋向于0时,割线PQ的斜率的极限为k.
例题 P(1,2)是曲线+1上的一点,Q是曲线上点P附近的一个点,当点Q沿曲线逐渐向点P趋近时割线PQ的斜率的变化情况.(图略)
3.巩固练习 P111练习1,2(处理:学生自求)
4.瞬时速度
例题 一个小球自由下落,它在下落3秒时的速度是多少?
说明:1)上例中,如果运用物理所学地匀变速直线运动地速度公式,可得
vt=v0+at=gt=29.4(m/s)这与上面用平均速度的极限求得的瞬时速度是一样的。
2)这种速度的极限求法适用范围就比较广,只要知道运动的规律(函数表达式),即可求出任一时刻的瞬时速度。
一般地,设物体的运动规律是s=s(t),则物体在t到(t+)这段时间内的平均速度为. 如果无限趋近于0时,无限趋近于某个常数a,就说当趋向于0时,的极限为a,这时a就是物体在时刻t的瞬时速度.
5.巩固练习:P113练习1,2(处理:学生自求)
【小结】
瞬时速度是平均速度当趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率当趋近于0时的极限。
【提高练习】
判断曲线在点P(1,2)处是否有切线,如果有,求出切线的方程。
物体的运动方程为s=t3+10,试求物体在t=3时的瞬时速度。
【作业】
P116习题3.1第1,2,6,7题1.2.2 导数的运算法则(二)
【学习目标】理解复合函数概念,记住复合函数的求导法则.理解导数的物理及几何意义;会求曲线上某点处的切线.
【基本概念】一般地,对于两个函数和,如果通过变量可以表示成的 ,那么称这个函数为函数和的 ,记作 .
如果函数和它们的复合函数的导数分别记为那么 .
即对的导数等于对 的导数与对 的导数的 .
【例证题】
例1 求下列函数的导数
(1) (2) (3)
(4)(其中均为常数)
求下列函数的导数
(1) (2) (3)
(4)(5) (6)
已知抛物线通过点,且在点处与直线相切,求的值.
姓名: 学号:
【作业】
1、函数则=( )
2、若函数则=( )
3、函数的导数为( )
4、函数在点处的切线方程为( )
5、★函数的导数是( )
6、若函数,则= .
7、已知函数,则= .
8、曲线在点处的切线方程是 .
9、曲线的切线中,斜率最小的切线方程是 .
10、求曲线上的点到直线的最短距离.
11、求下列函数的导数
(1) (2)
(3) (4) (5)
(6) (7)
导数的计算(自助餐)
1、已知,求= .
2、,则= .
3、已知直线是的切线,求的值.
4、求函数在点处的切线方程.
5、已知直线与抛物线相交于两点,是坐标原点,试在抛物线的弧上求一点,使的面积最大.
6、已知直线为曲线在点处的切线,为该曲线的另一条切线,且.
(1)求直线的方程;
(2)求由直线和轴所围成的三角形的面积.
【答案】
1、;2、;3、;4、
5、;6、(1) (2)生活中的优化问题
【学习目标】
1.掌握有关实际问题中的优化问题
2.形成求解优化问题的思路和方法
【复习回顾】
利用导数求函数极值和最值的方法:
利用导数解决生活中的优化问题的一般步骤:
(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系;
(2)求函数的导数,解方程;
(3)比较函数在区间端点和使的点的函数值的大小,最大(小)者为最大(小)值。
【知识点实例探究】例题见课本例1-例3
【作业】
1.一条长为的铁丝截成两段,分别弯成两个正方形,要使两个正方形的面积和最小,两端铁丝的长度分别为多少?
2.无盖方盒的最大容积问题
一边长为的正方形铁片,铁片的四角截去四个边长均为的小正方形,然后做成一个无盖的方盒。(1)试把方盒的体积表示为的函数。(2)多大时,方盒的容积最大?
3.圆柱形金属饮料罐容积一定时,它的高与半径怎样选择,才能使所用材料最省?
海报版面尺寸的设计
4.学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向张贴的海报,它的版心面积为128,上下两边各空2,左右两边各空1,如何设计海报的尺寸,才能使四周空白面积最小?
5.用测量工具测量某物体的长度,由于工具的精确度以及测量技术的原因,测得个数据证明:用个数据的平均值表示这个物体的长度,能使这个数据的方差最小。
思考:这个结果说明了什么?通过这个问题,你能说明最小二乘法的基本原理吗?
6.如图:用铁丝围成一个上面是半圆,下面是矩形的图形,其面积为,为使所用材料最省,底宽应为多少?
7.已知某商品生产成本与产量的函数关系为,价格与产量的函数关系式为,问产量为何值时,利润最大。
房价应定为多少
8.某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价每增加10元,就会有一个房间空闲。如果游客居住房间,宾馆每天需花费20元的各种维护费用,房间定价多少时,宾馆利润最大?
9.已知某商品进价为元/件,根据以往经验,当售价是元/件时,可卖出件。市场调查表明,当售价下降10%时,销量可增加10%。现决定一次性降价,销售价为多少时,可获得最大利润?课题:合情推理
掌握归纳推理的技巧,并能运用解决实际问题。
通过“自主、合作与探究”实现“一切以学生为中心”的理念。
感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
●教学重点:归纳推理及方法的总结。
●教学难点:归纳推理的含义及其具体应用。
●教具准备:与教材内容相关的资料。
●课时安排:1课时
●教学过程:
一.问题情境
(1)原理初探
①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”
②提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?
③探究:他是怎么发现“杠杆原理”的?
从而引入两则小典故:(图片展示-阿基米德的灵感)
A:一个小孩,为何轻轻松松就能提起一大桶水?
B:修筑河堤时,奴隶们是怎样搬运巨石的?
正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。
④思考:整个过程对你有什么启发?
⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。
(2)皇冠明珠
追逐先辈的足迹,接触数学皇冠上最璀璨的明珠 — “歌德巴赫猜想”。
链接:
思考:其他偶数是否也有类似的规律?
③讨论:组织学生进行交流、探讨。
④检验:2和4可以吗?为什么不行?
⑤归纳:通过刚才的探究,由学生归纳“归纳推理”的定义及特点。
3.数学建构
●把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).
注:归纳推理的特点;
简言之,归纳推理是由部分到整体、由特殊到一般的推理。
●归纳推理的一般步骤:
4.师生活动
例1 前提:蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。蛇、鳄鱼、海龟、蜥蜴都是爬行动物.
结论:所有的爬行动物都是用肺呼吸的。
例2 前提:三角形的内角和是1800,凸四边形的内角和是3600,凸五边形的内角和是5400,……
结论:凸n 边形的内角和是(n—2)×1800。
例3
探究:上述结论都成立吗?
强调:归纳推理的结果不一定成立! —— “ 一切皆有可能!”
5.提高巩固
①探索:先让学生独立进行思考。
②活动:“千里走单骑” — 鼓励学生说出自己的解题思路。
③活动:“圆桌会议” — 鼓励其他同学给予评价,对在哪里?错在哪里?还有没有更好的方法?
【设计意图】:提供一个舞台, 让学生展示自己的才华,这将极大地调动学生的积极性,增强学生的荣誉感,培养学生独立分析问题和解决问题的能力,体现了“自主探究”,同时,也锻炼了学生敢想、敢说、敢做的能力。
【一点心得】:在“千里走单骑”和“圆桌会议”的探究活动中,教师一定要以“鼓励和表扬”为主,面带微笑,消除学生的恐惧感,提高学生的自信心.
⑵能力培养(例2拓展)
①思考:怎么求?组织学生进行探究,寻找规律。
②归纳:由学生讨论,归纳技巧,得到技巧②和③。
技巧②:有整数和分数时,往往将整数化为分数.
技巧③:当分子分母都在变化时,往往统一分子 (或分母),再寻找另一部分的变化规律.
6.课堂小结
(1)归纳推理是由部分到整体,从特殊到一般的推理。通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
(2)归纳推理的一般步骤:
通过观察个别情况发现某些相同的性质 从已知的相同性质中推出一个明确表述的一般命题(猜想)
证明
课题:类比推理
●教学目标:
通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问
题的发现中去。
类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。
认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识。
●教学重点:了解合情推理的含义,能利用类比进行简单的推理。
●教学难点:用类比进行推理,做出猜想。
●教具准备:与教材内容相关的资料。
●课时安排:1课时
●教学过程:
一.问题情境
从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.
他的思路是这样的:
茅草是齿形的;
茅草能割破手.
我需要一种能割断木头的工具;
它也可以是齿形的.
这个推理过程是归纳推理吗?
二.数学活动
我们再看几个类似的推理实例。
例1、试根据等式的性质猜想不等式的性质。
等式的性质: 猜想不等式的性质:
(1) a=ba+c=b+c; (1) a>ba+c>b+c;
(2) a=b ac=bc; (2) a>b ac>bc;
(3) a=ba2=b2;等等。 (3) a>ba2>b2;等等。
问:这样猜想出的结论是否一定正确?
例2、试将平面上的圆与空间的球进行类比.
圆的定义:平面内到一个定点的距离等于定长的点的集合.
球的定义:到一个定点的距离等于定长的点的集合.
圆 球
弦←→截面圆
直径←→大圆
周长←→表面积
面积←→体积
圆的性质 球的性质
圆心与弦(不是直径)的中点的连线垂直于弦 球心与截面圆(不是大圆)的圆点的连线垂直于截面圆
与圆心距离相等的两弦相等;与圆心距离不等的两弦不等,距圆心较近的弦较长 与球心距离相等的两截面圆相等;与球心距离不等的两截面圆不等,距球心较近的截面圆较大
圆的切线垂直于过切点的半径;经过圆心且垂直于切线的直线必经过切点 球的切面垂直于过切点的半径;经过球心且垂直于切面的直线必经过切点
经过切点且垂直于切线的直线必经过圆心 经过切点且垂直于切面的直线必经过球心
☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).
简言之,类比推理是由特殊到特殊的推理.
类比推理的一般步骤:
⑴ 找出两类对象之间可以确切表述的相似特征;
⑵ 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;
⑶ 检验猜想。即
例3.在平面上,设ha,hb,hc是三角形ABC三条边上的高.P为三角形内任一点,P到相应三边的距离分别为pa,pb,pc,我们可以得到结论:
试通过类比,写出在空间中的类似结论.
巩固提高
1.(2001年上海)已知两个圆①x2+y2=1:与②x2+(y-3)2=1,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍然为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为-----------------------------
-------------------------------------------------------------------------------------------------------------------
2.类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.
直角三角形 3个面两两垂直的四面体
∠C=90°3个边的长度a,b,c 2条直角边a,b和1条斜边c ∠PDF=∠PDE=∠EDF=90° 4个面的面积S1,S2,S3和S 3个“直角面” S1,S2,S3和1个“斜面” S
3.(2004,北京)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
已知数列是等和数列,且,公和为5,那么的值为______________,这个数列的前n项和的计算公式为________________
课堂小结
1.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
类比推理的一般步骤:
①找出两类事物之间的相似性或者一致性。
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)
课 题:演绎推理
教学目标:1. 了解演绎推理 的含义。
2. 能正确地运用演绎推理 进行简单的推理。
3. 了解合情推理与演绎推理之间的联系与差别。
教学重点:正确地运用演绎推理 进行简单的推理
教学难点:了解合情推理与演绎推理之间的联系与差别。
教学过程:
复习:合情推理
归纳推理 从特殊到一般
类比推理 从特殊到特殊
从具体问题出发――观察、分析比较、联想――归纳。类比――提出猜想
问题情境。
观察与思考
1所有的金属都能导电
铜是金属,
所以,铜能够导电
2.一切奇数都不能被2整除,
(2100+1)是奇数,
所以, (2100+1)不能被2整除.
3.三角函数都是周期函数,
tan 是三角函数,
所以,tan 是 周期函数。
提出问题 :像这样的推理是合情推理吗?
二.学生活动 :
1.所有的金属都能导电 ←————大前提
铜是金属, ←-----小前提
所以,铜能够导电 ←――结论
2.一切奇数都不能被2整除 ←————大前提
(2100+1)是奇数,←――小前提
所以, (2100+1)不能被2整除. ←―――结论
3.三角函数都是周期函数, ←——大前提
tan 是三角函数, ←――小前提
所以,tan 是 周期函数。←――结论
建构数学
演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.
1.演绎推理是由一般到特殊的推理;
2.“三段论”是演绎推理的一般模式;包括
⑴大前提---已知的一般原理;
⑵小前提---所研究的特殊情况;
⑶结论-----据一般原理,对特殊情况做出的判断.
三段论的基本格式
M—P(M是P) (大前提)
S—M(S是M) (小前提)
S—P(S是P) (结论)
3.三段论推理的依据,用集合的观点来理解:
若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P.
四,数学运用
解:二次函数的图象是一条抛物线 (大前提)
例2.已知lg2=m,计算lg0.8
解 (1) lgan=nlga(a>0)---------大前提
lg8=lg23————小前提
lg8=3lg2————结论
lg(a/b)=lga-lgb(a>0,b>0)——大前提
lg0.8=lg(8/10)——-小前提
lg0.8=lg(8/10)——结论
例3.如图;在锐角三角形ABC中,AD⊥BC, BE⊥AC,
D,E是垂足,求证AB的中点M到D,E的距离相等
解: (1)因为有一个内角是只直角的三角形是直角三角形,——大前提
在△ABC中,AD⊥BC,即∠ADB=90°——-小前提
所以△ABD是直角三角形——结论
(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提
因为 DM是直角三角形斜边上的中线,——小前提
所以 DM= AB——结论
同理 EM= AB
所以 DM=EM.
练习:第35页 练习第 1,2,3,4,题
五 回顾小结:
演绎推理具有如下特点:课本第33页 。
演绎推理错误的主要原因是
1.大前提不成立;2, 小前提不符合大前提的条件。
作业:第35页 练习 第5题 。习题2。1 第4题。
课题:推理案例赏识
课型:新授课
教学目标:
1. 了解合情推理和演绎推理 的含义。
2. 能正确地运用合情推理和演绎推理 进行简单的推理。
3. 了解合情推理与演绎推理之间的联系与差别。
教学重点:了解合情推理与演绎推理之间的联系与差别
教学难点:了解合情推理和演绎推理是怎样推进数学发现活动的。
教学过程:
复习 合情推理和演绎推理的过程
案例:
例一 正整数平方和公式的推导。
提出问题
我们知道,前n个正整数的和为
(n)=1+2+3+…….+n= n(n+i) ①
那么,前n 个正整数的平方和
(n)==? ②
三,数学活动
思路1 (归纳的方案) 参照课本 第36页 -37页 三表 猜想
(n)=
思考 :上面的数学活动是由哪些环节构成的?
在这个过程中提出了哪些猜想?
提出猜想时使用了哪些推理方法?
合情推理和演绎推理分别发挥了什么作用?
思路2 (演绎的方案)
尝试用直接相加的方法求出正整数的平方和。
把正整数的平方和表示出来,参照课本棣37页
左右两边分别相加,等号两边的(n)被消去了,所以无法从中求出 (n)的值,尝试失败了。
(2)从失败中吸取有用信息,进行新的尝试
(3)尝试把两项和的平方公式改为两项和的立方公式。左右两边相加,
终于导出了公式。
思考: 上面的数学活动是由哪些环节构成的?
在这个过程中提出了哪些猜想?
提出猜想时使用了哪些推理方法?
合情推理和演绎推理分别发挥了什么作用。
四,数学理论:
上面的案例说明:
(1)数学发现过程是一个探索创造的过程.是一个不断地提出猜想验证猜想的过程,合情推理和论证推理相辅相成,相互为用,共同推动着发现活动的进程。
(2)合情推理是富于创造性的或然推理,在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论,提供思路的作用。
(3)演绎推理是形式化程度较高的必然推理,在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了前提,而且可以对猜想作出“判决”和证明,从而为调控探索活动提供依据。
五,巩固练习:
阅读课本第39页
棱台体积公式的探求
通过阅读或查资料,寻找合情推理和演绎推理在数学推理在数学活动中的作用的案例,并回答问题:
1 。案例中的数学活动是由哪些环节构成的?
2 。在上这个过程中提出了哪些猜想?
3 , 提出猜想时使用了哪些推理方法?
4, 合情推理和演绎推理分别发挥了什么作用?
六,教学小结:
(1)数学发现过程是一个探索创造的过程.是一个不断地提出猜想验证猜想的过程,合情推理和论证推理相辅相成,相互为用,共同推动着发现活动的进程。
(2)合情推理是富于创造性的或然推理,在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论,提供思路的作用。
(3)演绎推理是形式化程度较高的必然推理,在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了前提,而且可以对猜想作出“判决”和证明,从而为调控探索活动提供依据。
七,作业:
八,教后感:
课题:直接证明--综合法与分析法
1.教学目标:
知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
2.教学重点:了解分析法和综合法的思考过程、特点
3.教学难点:分析法和综合法的思考过程、特点
4.教具准备:与教材内容相关的资料。
5.教学设想:分析法和综合法的思考过程、特点. “变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。
6.教学过程:
学生探究过程:证明的方法
(1)、分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。
(2)、例1.设a、b是两个正实数,且a≠b,求证:a3+b3>a2b+ab2.
证明:(用分析法思路书写)
要证 a3+b3>a2b+ab2成立,
只需证(a+b)(a2-ab+b2)>ab(a+b)成立,
即需证a2-ab+b2>ab成立。(∵a+b>0)
只需证a2-2ab+b2>0成立,
即需证(a-b)2>0成立。
而由已知条件可知,a≠b,有a-b≠0,所以(a-b)2>0显然成立,由此命题得证。
(以下用综合法思路书写)
∵a≠b,∴a-b≠0,∴(a-b)2>0,即a2-2ab+b2>0
亦即a2-ab+b2>ab
由题设条件知,a+b>0,∴(a+b)(a2-ab+b2)>(a+b)ab
即a3+b3>a2b+ab2,由此命题得证
例2、若实数,求证:
证明:采用差值比较法:
=
= =
=
∴ ∴
例3、已知求证
本题可以尝试使用差值比较和商值比较两种方法进行。
证明:1) 差值比较法:注意到要证的不等式关于对称,不妨设
,从而原不等式得证。
2)商值比较法:设
故原不等式得证。
注:比较法是证明不等式的一种最基本、最重要的方法。用比较法证明不等式的步骤是:作差(或作商)、变形、判断符号。
讨论:若题设中去掉这一限制条件,要求证的结论如何变换?
巩固练习:第81页练习1 , 2 , 3 , 4
课后作业:第84页 1,2, 3
教学反思:本节课学习了分析法和综合法的思考过程、特点. “变形”是解题的关键,是最重一步。因式分解、配方、凑成若干个平方和等是“变形”的常用方法。
课题:间接证明--反证法
1.教学目标:
知识与技能:结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
2.教学重点:了解反证法的思考过程、特点
3. 教学难点:反证法的思考过程、特点
4.教具准备:与教材内容相关的资料。
5.教学设想:利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。
6.教学过程:
学生探究过程:综合法与分析法
(1)、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
(2)、例子
例1、求证:不是有理数
例2、已知,求证:(且)
例3、设,求证
证明:假设,则有,从而
因为,所以,这与题设条件矛盾,所以,原不
等式成立。
例4、设二次函数,求证:中至少有一个不小于.
证明:假设都小于,则
(1)
另一方面,由绝对值不等式的性质,有
(2)
(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。
注意:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行。
议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?
例5、设0 < a, b, c < 1,求证:(1 a)b, (1 b)c, (1 c)a,不可能同时大于
证:设(1 a)b >, (1 b)c >, (1 c)a >,
则三式相乘:ab < (1 a)b (1 b)c (1 c)a < ①
又∵0 < a, b, c < 1 ∴
同理:,
以上三式相乘: (1 a)a (1 b)b (1 c)c≤ 与①矛盾
∴原式成立
例6、已知a + b + c > 0,ab + bc + ca > 0,abc > 0,求证:a, b, c > 0
证:设a < 0, ∵abc > 0, ∴bc < 0
又由a + b + c > 0, 则b + c = a > 0
∴ab + bc + ca = a(b + c) + bc < 0 与题设矛盾
又:若a = 0,则与abc > 0矛盾, ∴必有a > 0
同理可证:b > 0, c > 0
巩固练习:第83页练习3、4、5、6
课后作业:第84页 4、5、6
教学反思:
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
课题:数学归纳法
一、教学目标:
1.了解数学归纳法的原理,理解数学归纳法的一般步骤。
2.掌握数学归纳法证明问题的方法。
3.能用数学归纳法证明一些简单的数学命题。
二、教学重点:掌握数学归纳法的原理及证明问题的方法。
难点:能用数学归纳法证明一些简单的数学命题。
三、教学过程:
【创设情境】
1.华罗庚的“摸球实验”。
2.“多米诺骨牌实验”。
问题:如何保证所摸的球都是红球?多米诺骨牌全部倒下?处了利用完全归纳法全部枚举之外,是否还有其它方法?
数学归纳法:数学归纳法实际上是一种以数学归纳法原理为依据的演绎推理,它将一个无穷的归纳过程转化为一个有限步骤的演绎过程,是处理自然数问题的有力工具。
【探索研究】
1.数学归纳法的本质:
无穷的归纳→有限的演绎(递推关系)
2.数学归纳法公理:
(1)(递推奠基):当n取第一个值n0结论正确;
(2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设)
证明当n=k+1时结论也正确。(归纳证明)
由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。
【例题评析】
例1:以知数列{an}的公差为d,求证:
说明:①归纳证明时,利用归纳假设创造递推条件,寻求f(k+1)与f(k)的递推关系,是解题的关键。
②数学归纳法证明的基本形式;
(1)(递推奠基):当n取第一个值n0结论正确;
(2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设)
证明当n=k+1时结论也正确。(归纳证明)
由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。
EX: 1.判断下列推证是否正确。
P88 2,3
2. 用数学归纳法证明
例2:用数学归纳法证明(n∈N,n≥2)
说明:注意从n=k到n=k+1时,添加项的变化。
EX:1.用数学归纳法证明:
(1)当n=1时,左边有_____项,右边有_____项;
(2)当n=k时,左边有_____项,右边有_____项;
(3)当n=k+1时,左边有_____项,右边有_____项;
(4)等式的左右两边,由n=k到n=k+1时有什么不同
变题: 用数学归纳法证明 (n∈N+)
例3:设f(n)=1+,求证n+f(1)+f(2)+…f(n-1)=nf(n) (n∈N,n≥2)
说明:注意分析f(k)和f(k+1)的关系。
【课堂小结】
1.数学归纳法公理:
(1)(递推奠基):当n取第一个值n0结论正确;
(2)(递推归纳):假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设)
证明当n=k+1时结论也正确。(归纳证明)
由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。
2. 注意从n=k到n=k+1时,添加项的变化。利用归纳假设创造递推条件,寻求f(k+1)与f(k)的递推关系.
【反馈练习】
1.用数学归纳法证明3k≥n3(n≥3,n∈N)第一步应验证( )
A n=1 B ( http: / / www. / wxc / ) n=2 C n=3 D ( http: / / www. / wxc / ) n=4
2.用数学归纳法证明第二步证明从“k到k+1”,左端增加的项数是( )
A. B C D
3.若n为大于1的自然数,求证 ( http: / / www. / wxc / )
证明 (1)当n=2时,
(2)假设当n=k时成立,即
4.用数学归纳法证明
【课外作业】
《课标检测》
课题:数学归纳法
一、教学目标:
1.了解数学归纳法的原理,理解数学归纳法的一般步骤。
2.掌握数学归纳法证明问题的方法,能用数学归纳法证明一些简单的数学命题
3.能通过“归纳-猜想-证明”处理问题。
二、教学重点:能用数学归纳法证明一些简单的数学命题。
难点:归纳→猜想→证明。
三、教学过程:
【创设情境】
问题1:数学归纳法的基本思想?
以数学归纳法原理为依据的演绎推理,它将一个无穷归纳(完全归纳)的过程,转化为一个有限步骤的演绎过程。(递推关系)
问题2:数学归纳法证明命题的步骤?
(1)递推奠基:当n取第一个值n0结论正确;
(2)递推归纳:假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设)
证明当n=k+1时结论也正确。(归纳证明)
由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。
数学归纳法是直接证明的一种重要方法,应用十分广泛,主要体现在与正整数有关的恒等式、不等式;数的整除性、几何问题;探求数列的通项及前n项和等问题。
【探索研究】
问题:用数学归纳法证明:能被9整除。
法一:配凑递推假设:
法二:计算f(k+1)-f(k),避免配凑。
说明:①归纳证明时,利用归纳假设创造条件,是解题的关键。
②注意从“n=k到n=k+1”时项的变化。
【例题评析】
例1:求证: 能被整除(n∈N+)。
例2:数列{an}中,,a1=1且
(1)求的值;
(2)猜想{an}的通项公式,并证明你的猜想。
说明:用数学归纳法证明问题的常用方法:归纳→猜想→证明
变题:(2002全国理科)设数列{an}满足,n∈N+,
(1)当a1=2时,求,并猜想{an}的一个通项公式;
(2)当a1≥3时,证明对所有的n≥1,有
①an≥n+2 ②
例3:平面内有n条直线,其中任何两条不平行,任何三条直线不共点,问:这n条直线将平面分成多少部分?
变题:平面内有n个圆,其中每两个圆都相交与两点,且每三个圆都不相交于同一点,求证:这n个圆把平面分成n2+n+2个部分。
例4:设函数f(x)是满足不等式,(k∈N+)的自然数x的个数;
(1)求f(x)的解析式;
(2)记Sn=f(1)+f(2)+…+f(n),求Sn的解析式;
(3)令Pn=n2+n-1 (n∈N+),试比较Sn与Pn的大小。
【课堂小结】
1.猜归法是发现与论证的完美结合
数学归纳法证明正整数问题的一般方法:
归纳→猜想→证明。
2.两个注意:
(1)是否用了归纳假设?
(2)从n=k到n=k+1时关注项的变化?
【反馈练习】
1 ( http: / / www. / wxc / ) 观察下列式子 …则可归纳出____ ( http: / / www. / wxc / )
(n∈N*)
1.用数学归纳法证明
2.已知数列计算根据计算结果,猜想的表达式,并用数学归纳法证明。
3.是否存在常数a、b、c,使等式
对一切都成立?并证明你的结论.
【课外作业】
《课标检测》
课题:复习课
一、教学目标:
1.了解本章知识结构。
2.进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。课题:数学归纳法
3.认识数学本质,把握数学本质,增强创新意识,提高创新能力。
二、教学重点:进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。
难点:认识数学本质,把握数学本质,增强创新意识,提高创新能力
三、教学过程:
【创设情境】
一、知识结构:
【探索研究】
我们从逻辑上分析归纳、类比、演绎的推理形式及特点;揭示了分析法、综合法、数学归纳法和反证法的思维过程及特点。通过学习,进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。
【例题评析】
例1:如图第n个图形是由正n+2边形“扩展”而来,(n=1,2,3,…)。则第n-2个图形中共有________个顶点。
变题:黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:
则第n个图案中有白色地面砖 块。
例2:长方形的对角线与过同一个顶点的两边所成的角为,则
=1,将长方形与长方体进行类比,可猜测的结论为:_______________________;
变题1:已知,m是非零常数,x∈R,且有= ,问f(x)是否是周期函数?若是,求出它的一个周期,若不是,说明理由。
变题2:数列的前n项和记为Sn,已知证明:
(Ⅰ)数列是等比数列;
(Ⅱ)
例3:设f(x)=ax2+bx+c(a≠0),若函数f(x+1)与函数f(x)的图象关于y轴对称,求证:
为偶函数。
例4:设Sn=1+ (n>1,n∈N),求证: ()
评析:数学归纳法证明不等式时,经常用到“放缩”的技巧。
变题:是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c) 对于一切正整数n都成立?证明你的结论。
解 假设存在a、b、c使题设的等式成立,
这时令n=1,2,3,有
于是,对n=1,2,3下面等式成立
1·22+2·32+…+n(n+1)2=
记Sn=1·22+2·32+…+n(n+1)2
(1)n=1时,等式以证,成立。
(2)设n=k时上式成立,即Sk= (3k2+11k+10)
那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2
= (3k2+5k+12k+24)=[3(k+1)2+11(k+1)+10]
也就是说,等式对n=k+1也成立 ( http: / / www. / wxc / )
综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立
【课堂小结】
体会常用的思维模式和证明方法。
【反馈练习】
1.(2005辽宁)在R上定义运算若不等式对任意实数成立, 则
A. B. C. D.
2.定义A*B,B*C,C*D,D*B分别对应下列图形
那么下列图形中
可以表示A*D,A*C的分别是 ( )
A.(1)、(2) B.(2)、(3) C.(2)、(4) D.(1)、(4)
3 ( http: / / www. / wxc / ) 已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为( )
A 30 B ( http: / / www. / wxc / ) 26 C 36 D ( http: / / www. / wxc / ) 6
解析 ∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除 ( http: / / www. / wxc / )
证明 n=1,2时,由上得证,设n=k(k≥2)时,
f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2?(k≥2) f(k+1)能被36整除
∵f(1)不能被大于36的数整除,∴所求最大的m值等于36 ( http: / / www. / wxc / )
4 已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145 ( http: / / www. / wxc / )
(1)求数列{bn}的通项公式bn;
(2)设数列{an}的通项an=loga(1+)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比较Sn与logabn+1的大小,并证明你的结论
解 ( http: / / www. / wxc / ) (1) 设数列{bn}的公差为d,
由题意得,∴bn=3n-2
(2)证明 由bn=3n-2知Sn=loga(1+1)+loga(1+)+…+loga(1+)
=loga[(1+1)(1+)…(1+ )]
而logabn+1=loga,于是,比较Sn与logabn+1?的大小
比较(1+1)(1+)…(1+)与的大小 ( http: / / www. / wxc / )
取n=1,有(1+1)=
取n=2,有(1+1)(1+
推测 (1+1)(1+)…(1+)> (*)
①当n=1时,已验证(*)式成立 ( http: / / www. / wxc / )
②假设n=k(k≥1)时(*)式成立,即(1+1)(1+)…(1+)>
则当n=k+1时,
,
即当n=k+1时,(*)式成立
由①②知,(*)式对任意正整数n都成立
于是,当a>1时,Sn>logabn+1?,当 0<a<1时,Sn<logabn+1?
【课外作业】
《课标检测》
归纳推理的发展过程
观察
猜想
证明
世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个≥6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个≥9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 =
5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
观察、比较
联想、类推
猜想新结论
推理与证明
推理
证明
合情推理
演绎推理
直接证明
间接证明
类比推理
归纳推理
分析法
综合法
反证法
数学归纳法
第1个
第2个
第3个
(1)
(2)
(3)
(4)
(1)
(2)
(3)
(4)1.6微积分积分定理
【学习目标】
通过实例直观了解微积分积分定理的含义;
熟练地用微积分积分定理计算微积分.
【复习回顾】
1.基本初等函数地求导公式:
2.导数运算法则:
3.连续函数在上的定积分定义:
4.定积分的性质:
【知识点实例探究】看课本57—59得出微积分基本定理:
如果是区间上的连续函数并且,那么___________
例1.计算下列定积分:
(1) (2)
例2.计算下列定积分:,,.
由计算结果你能发现什么结论 试利用曲边梯形的面积表示所发现的结论.
例3.计算下列定积分:
(1) (2)
(3) (4)
(5) (6)
(7) (8)
(9) (10)
(11) (12)
(13)
【作业】
1.下列各式中,正确的是
A. B.
C. D.
2.已知自由落体的运动速度为常数),则当时,物体下落的距离是
A. B. C. D.
3.若则的值是
A.6 B.4 C.3 D.2
4.等于
A. B. C. D.
5.是一次函数,且,那么的解析式是
A. B.
C. D.
6.已知,则=( )
7.设是奇函数,求=( )
8.设,求
9.求
10.课本62页B组2.
11.课本62页B组3.§3.2.2复数代数形式的乘除运算
教学目标:
知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算
过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题
情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。
教学重点:复数代数形式的除法运算。
教学难点:对复数除法法则的运用。
教具准备:多媒体、实物投影仪。
教学设想:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d,只有当两个复数不全是实数时才不能比较大小
教学过程:
学生探究过程:
1.虚数单位:(1)它的平方等于-1,即 ; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
2. 与-1的关系: 就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-
3. 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=1
4.复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示*
3. 复数的代数形式: 复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式
4. 复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.
5.复数集与其它数集之间的关系:NZQRC.
6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d
一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小
7. 复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数
对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z=0+0i=0表示是实数.故除了原点外,虚轴上的点都表示纯虚数
8.复数z1与z2的和的定义:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.
9. 复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.
10. 复数的加法运算满足交换律: z1+z2=z2+z1.
11. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3)
讲解新课:
1.乘法运算规则:
规定复数的乘法按照以下的法则进行:
设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.
2.乘法运算律:
(1)z1(z2z3)=(z1z2)z3
证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).
∵z1z2=(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(b1a2+a1b2)i,
z2z1=(a2+b2i)(a1+b1i)=(a2a1-b2b1)+(b2a1+a2b1)i.
又a1a2-b1b2=a2a1-b2b1,b1a2+a1b2=b2a1+a2b1.
∴z1z2=z2z1.
(2)z1(z2+z3)=z1z2+z1z3
证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).
∵(z1z2)z3=[(a1+b1i)(a2+b2i)](a3+b3i)=[(a1a2-b1b2)+(b1b2+a1b2)i](a3+b3i)
=[(a1a2-b1b2)a3-(b1a2+a1b2)b3]+[(b1a2+a1b2)a3+(a1a2-b1b2)b3]i
=(a1a2a3-b1b2a3-b1a2b3-a1b2b3)+(b1a2a3+a1b2b3+a1a2b3-b1b2b3)i,
同理可证:
z1(z2z3)=(a1a2a3-b1b2a3-b1a2b3-a1b2b3)+(b1a2a3+a1b2a3+a1a2b3-b1b2b3)i,
∴(z1z2)z3=z1(z2z3).
(3)z1(z2+z3)=z1z2+z1z3.
证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R).
∵z1(z2+z3)=(a1+b1i)[(a2+b2i)+(a3+b3i)]=(a1+b1i)[(a2+a3)+(b2+b3)i]
=[a1(a2+a3)-b1(b2+b3)]+[b1(a2+a3)+a1(b2+b3)]i
=(a1a2+a1a3-b1b2-b1b3)+(b1a2+b1a3+a1b2+a1b3)i.
z1z2+z1z3=(a1+b1i)(a2+b2i)+(a1+b1i)(a3+b3i)
=(a1a2-b1b2)+(b1a2+a1b2)i+(a1a3-b1b3)+(b1a3+a1b3)i
=(a1a2-b1b2+a1a3-b1b3)+(b1a2+a1b2+b1a3+a1b3)i
=(a1a2+a1a3-b1b2-b1b3)+(b1a2+b1a3+a1b2+a1b3)i
∴z1(z2+z3)=z1z2+z1z3.
例1计算(1-2i)(3+4i)(-2+i)
解:(1-2i)(3+4i)(-2+i)=(11-2i) (-2+i)= -20+15i.
例2计算:
(1)(3+4i) (3-4i) ; (2)(1+ i)2.
解:(1)(3+4i) (3-4i) =32-(4i)2=9-(-16)=25;
(2) (1+ i)2=1+2 i+i2=1+2 i-1=2 i.
3.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数
通常记复数的共轭复数为。
4. 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商,记为:(a+bi)(c+di)或者
5.除法运算规则:
①设复数a+bi(a,b∈R),除以c+di(c,d∈R),其商为x+yi(x,y∈R),
即(a+bi)÷(c+di)=x+yi
∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i.
∴(cx-dy)+(dx+cy)i=a+bi.
由复数相等定义可知
解这个方程组,得
于是有:(a+bi)÷(c+di)= i.
②利用(c+di)(c-di)=c2+d2.于是将的分母有理化得:
原式=
.
∴(a+bi)÷(c+di)=.
点评:①是常规方法,②是利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数c+di与复数c-di,相当于我们初中学习的的对偶式,它们之积为1是有理数,而(c+di)·(c-di)=c2+d2是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法
例3计算
解:
例4计算
解:
例5已知z是虚数,且z+是实数,求证:是纯虚数.
证明:设z=a+bi(a、b∈R且b≠0),于是
z+=a+bi+=a+bi+.
∵z+∈R,∴b-=0.
∵b≠0,∴a2+b2=1.
∴
∵b≠0,a、b∈R,∴是纯虚数
巩固练习:
1.设z=3+i,则等于
A.3+i B.3-i C. D.
2.的值是
A.0 B.i C.-i D.1
3.已知z1=2-i,z2=1+3i,则复数的虚部为
A.1 B.-1 C.i D.-i
4.设 (x∈R,y∈R),则x=___________,y=___________.
答案:1.D 2.A 3.A 4. , -
课后作业:课本第112页 习题3. 2 A组4,5,6
B组1,2
教学反思:
复数的乘法法则是:(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 复数的代数式相乘,可按多项式类似的办法进行,不必去记公式.
复数的除法法则是:i(c+di≠0).
两个复数相除较简捷的方法是把它们的商写成分式的形式,然后把分子与分母都乘以分母的共轭复数,再把结果化简
高考题选
1.(2007年北京卷) .
2. (2007年湖北卷)复数z=a+bi,a,b∈R,且b≠0,若是实数,则有序实数对(a,b)可以是 .(写出一个有序实数对即可)
【答案】:.
【分析】:是实数,所以,取.
【高考考点】:本题主要考查复数的基本概念和运算.
【易错点】:复数的运算公式不能记错。
【高21世纪教育网备考提示】:复数的基本概念和运算,是高考每年必考的内容,应熟练掌握。
3.(2007年福建卷)复数等于( D )
A. B. C. D.
4.(2007年广东卷)若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b为实数),则b=
(A) -2 (B) - (C) (D) 2
答案:B;解析:(1+bi)(2+i)=(2-b)+(2b+1)i,故2b+1=0,故选B;
5.(2007年湖南卷)复数等于( C )
A. B. C. D.
6.(2007年江西卷)化简的结果是( C )
A. B. C. D.
7.(2007年全国卷I)设是实数,且是实数,则( B )
A. B. C. D.
8.(2007年全国卷Ⅱ)设复数满足,则( C )
A. B. C. D.
9.(2007年陕西卷)在复平面内,复数z=对应的点位于(D)
(A)第一象限 (B)第二象限 (C)第在象限 (D)第四象限
10.(2007年四川卷)复数的值是( )
(A)0 (B)1 (C) (D)
解析:选A..
本题考查复数的代数运算.
11.(2007年天津卷)是虚数单位,( C )
A. B. C. D.
12.(2007年浙江卷)已知复数,,则复数 .
13.(2007年上海卷)已知是实系数一元二次方程的两根,则的值为 (A)
A、 B、 C、 D、
14.(2007年重庆卷)复数的虚部为______.
15.(2007年安徽卷)若a为实数,=-I,则a等于(B)
(A) (B)- (C)2 (D)-2
16.(2007年山东卷)若(虚数单位),则使的值可能是(D)
(A) (B) (C) (D)
17.(2007年宁夏卷)是虚数单位, .(用的形式表示,)§1.3.3函数的最大(小)值与导数(2课时)
教学目标:
⒈使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;
⒉使学生掌握用导数求函数的极值及最值的方法和步骤
教学重点:利用导数求函数的最大值和最小值的方法.
教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系.
教学过程:
一.创设情景
我们知道,极值反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.也就是说,如果是函数的极大(小)值点,那么在点附近找不到比更大(小)的值.但是,在解决实际问题或研究函数的性质时,我们更关心函数在某个区间上,哪个至最大,哪个值最小.如果是函数的最大(小)值,那么不小(大)于函数在相应区间上的所有函数值.
二.新课讲授
观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.
1.结论:一般地,在闭区间上函数的图像是一条连续不断的曲线,那么函数在上必有最大值与最小值.
说明:⑴如果在某一区间上函数的图像是一条连续不断的曲线,则称函数在这个区间上连续.(可以不给学生讲)
⑵给定函数的区间必须是闭区间,在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值;
⑶在闭区间上的每一点必须连续,即函数图像没有间断,
⑷函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件.(可以不给学生讲)
2.“最值”与“极值”的区别和联系
⑴最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.
⑵从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;
⑶函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个
⑷极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.
3.利用导数求函数的最值步骤:
由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.
一般地,求函数在上的最大值与最小值的步骤如下:
⑴求在内的极值;
⑵将的各极值与端点处的函数值、比较,其中最大的一个是最大值,最小的一个是最小值,得出函数在上的最值
三.典例分析
例1.(课本例5)求在的最大值与最小值
解: 由例4可知,在上,当时,有极小值,并且极小值为,又由于,
因此,函数在的最大值是4,最小值是.
上述结论可以从函数在上的图象得到直观验证.
四.课堂练习
1.下列说法正确的是( )
A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值
C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值
2.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x) ( )
A.等于0 B.大于0 C.小于0 D.以上都有可能
3.函数y=,在[-1,1]上的最小值为( )
A.0 B.-2 C.-1 D.
4.求函数在区间上的最大值与最小值.
5.课本 练习
五.回顾总结
1.函数在闭区间上的最值点必在下列各种点之中:导数等于零的点,导数不存在的点,区间端点;
2.函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件;
3.闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值
4.利用导数求函数的最值方法.
六.布置作业§1.1.1变化率问题
教学目标:
1.理解平均变化率的概念;
2.了解平均变化率的几何意义;
3.会求函数在某点处附近的平均变化率
教学重点:平均变化率的概念、函数在某点处附近的平均变化率;
教学难点:平均变化率的概念.
教学过程:
一.创设情景
为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:
一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;
二、求曲线的切线;
三、求已知函数的最大值与最小值;
四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.
二.新课讲授
(一)问题提出
问题1 气球膨胀率
我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢
气球的体积V(单位:L)与半径r(单位:dm)之间的函数关系是
如果将半径r表示为体积V的函数,那么
分析: ,
当V从0增加到1时,气球半径增加了
气球的平均膨胀率为
当V从1增加到2时,气球半径增加了
气球的平均膨胀率为
可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.
思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少
问题2 高台跳水
在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)= -4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态
思考计算:和的平均速度
在这段时间里,;
在这段时间里,
探究:计算运动员在这段时间里的平均速度,并思考以下问题:
⑴运动员在这段时间内使静止的吗?
⑵你认为用平均速度描述运动员的运动状态有什么问题吗?
探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知,,
所以,
虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态.
(二)平均变化率概念:
1.上述问题中的变化率可用式子 表示, 称为函数f(x)从x1到x2的平均变化率
2.若设, (这里看作是对于x1的一个“增量”可用x1+代替x2,同样)
则平均变化率为
思考:观察函数f(x)的图象
平均变化率表示什么
直线AB的斜率
三.典例分析
例1.已知函数f(x)=的图象上的一点及临近一点,则 .
解:,
∴
求在附近的平均变化率。
解:,所以
所以在附近的平均变化率为
四.课堂练习
1.质点运动规律为,则在时间中相应的平均速度为 .
2.物体按照s(t)=3t2+t+4的规律作直线运动,求在4s附近的平均变化率.
3.过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.
五.回顾总结
1.平均变化率的概念
2.函数在某点处附近的平均变化率
六.布置作业
h
t
o
f(x2)
y=f(x)
y
△y =f(x2)-f(x1)
f(x1)
△x= x2-x1
x2
x1
x
O§1.4生活中的优化问题举例(2课时)
教学目标:
使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用
提高将实际问题转化为数学问题的能力
教学重点:利用导数解决生活中的一些优化问题.
教学难点:利用导数解决生活中的一些优化问题.
教学过程:
一.创设情景
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.
二.新课讲授
导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。
解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.
利用导数解决优化问题的基本思路:
三.典例分析
例1.汽油的使用效率何时最高
我们知道,汽油的消耗量(单位:L)与汽车的速度(单位:km/h)之间有一定的关系,汽油的消耗量是汽车速度的函数.根据你的生活经验,思考下面两个问题:
是不是汽车的速度越快,汽车的消耗量越大?
“汽油的使用率最高”的含义是什么?
分析:研究汽油的使用效率(单位:L/m)就是研究秋游消耗量与汽车行驶路程的比值.如果用表示每千米平均的汽油消耗量,那么,其中,表示汽油消耗量(单位:L),表示汽油行驶的路程(单位:km).这样,求“每千米路程的汽油消耗量最少”,就是求的最小值的问题.
通过大量的统计数据,并对数据进行分析、研究,
人们发现,汽车在行驶过程中,汽油平均消耗率
(即每小时的汽油消耗量,单位:L/h)与汽车行驶的
平均速度(单位:km/h)之间有
如图所示的函数关系.
从图中不能直接解决汽油使用效率最高的问题.因此,我们首先需要将问题转化为汽油平均消耗率(即每小时的汽油消耗量,单位:L/h)与汽车行驶的平均速度(单位:km/h)之间关系的问题,然后利用图像中的数据信息,解决汽油使用效率最高的问题.
解:因为
这样,问题就转化为求的最小值.从图象上看,表示经过原点与曲线上点的直线的斜率.进一步发现,当直线与曲线相切时,其斜率最小.在此切点处速度约为90.
因此,当汽车行驶距离一定时,要使汽油的使用效率最高,即每千米的汽油消耗量最小,此时的车速约为90.从数值上看,每千米的耗油量就是图中切线的斜率,即,约为 L.
例2.磁盘的最大存储量问题
计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。
为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。
问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域.
是不是越小,磁盘的存储量越大?
为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?
解:由题意知:存储量=磁道数×每磁道的比特数。
设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储任何信息,故磁道数最多可达。由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量
×
它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大.
为求的最大值,计算.
令,解得
当时,;当时,.
因此时,磁盘具有最大存储量。此时最大存储量为
例3.饮料瓶大小对饮料公司利润的影响
(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?
(2)是不是饮料瓶越大,饮料公司的利润越大?
【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是 分,其中 是瓶子的半径,单位是厘米。已知每出售1 mL的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm
问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶的利润最小?
解:由于瓶子的半径为,所以每瓶饮料的利润是
令 解得 (舍去)
当时,;当时,.
当半径时,它表示单调递增,即半径越大,利润越高;
当半径时, 它表示单调递减,即半径越大,利润越低.
半径为cm 时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.
半径为cm时,利润最大.
换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?
有图像知:当时,,即瓶子的半径为3cm时,饮料的利润与饮料瓶的成本恰好相等;当时,利润才为正值.
当时,,为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为cm 时,利润最小.
说明:
四.课堂练习
1.用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作的容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积.(高为1.2 m,最大容积)
5.课本 练习
五.回顾总结
1.利用导数解决优化问题的基本思路:
2.解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决.在这个过程中,导数往往是一个有利的工具。
六.布置作业
建立数学模型
解决数学模型
作答
用函数表示的数学问题
优化问题
用导数解决数学问题
优化问题的答案
建立数学模型
解决数学模型
作答
用函数表示的数学问题
优化问题
用导数解决数学问题
优化问题的答案§1.5.3定积分的概念
授课人:陈联沁 班级:高二(13) 时间:2007-12-10
教学目标:
1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景;
2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简单的定积分;
3.理解掌握定积分的几何意义.
教学重点:定积分的概念、用定义求简单的定积分、定积分的几何意义.
教学难点:定积分的概念、定积分的几何意义.
教学过程:
一.创设情景
复习:
1. 回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤:
分割→近似代替(以直代曲)→求和→取极限(逼近)
2.对这四个步骤再以分析、理解、归纳,找出共同点.
二.新课讲授
1.定积分的概念
一般地,设函数在区间上连续,用分点
将区间等分成个小区间,每个小区间长度为(),在每个小区间上任取一点,作和式:
如果无限接近于(亦即)时,上述和式无限趋近于常数,那么称该常数为函数在区间上的定积分。记为:,
其中积分号,-积分上限,-积分下限,-被积函数,-积分变量,-积分区间,-被积式。
说明:(1)定积分是一个常数,即无限趋近的常数(时)记为,而不是.
(2)用定义求定积分的一般方法是:①分割:等分区间;②近似代替:取点;③求和:;④取极限:
(3)曲边图形面积:;变速运动路程;变力做功
2.定积分的几何意义
从几何上看,如果在区间上函数连续且恒有,那么定积分表示由直线和曲线所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分的几何意义。
说明:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号。
分析:一般的,设被积函数,若在上可取负值。
考察和式
不妨设
于是和式即为
阴影的面积—阴影的面积(即轴上方面积减轴下方的面积)
思考:根据定积分的几何意义,你能用定积分表示图中阴影部分的面积S吗?
3.定积分的性质
根据定积分的定义,不难得出定积分的如下性质:
性质1;
性质2(定积分的线性性质);
性质3(定积分的线性性质);
性质4(定积分对积分区间的可加性)
(1) ; (2) ;
说明:①推广:
②推广:
③性质解释:
三.典例分析
例1.利用定积分的定义,计算的值。
分析:令;
(1)分割
把区间n等分,则第i个区间为:,每个小区间长度为:;
(2)近似代替、求和
取,则(3)取极限
.
例2.计算定积分
分析:所求定积分是所围成的梯形面积,即为如图阴影部分面积,面积为。
即:
思考:若改为计算定积分呢?
改变了积分上、下限,被积函数在上
出现了负值如何解决呢?(后面解决的问题)
例3.计算定积分
分析:利用定积分性质有,
利用定积分的定义分别求出,,就能得到的值。
四.课堂练习
计算下列定积分
1.
2.
3.课本练习:计算的值,并从几何上解释这个值表示什么?
五.回顾总结
1.定积分的概念、用定义法求简单的定积分、定积分的几何意义.
六.布置作业
P50 3、5
性质4
性质1
1
2
y
x
O1.3.2函数的单调性与导数
【学习目标】
会熟练用求导,求函数单调区间,证明单调性;
会从导数的角度解释增减及增减的快慢情况
【知识点】
1.用求导求函数单调区间的过程是_______________________________________________
______________________________________________________________________________
2.用求导证明函数在某区间上的单调性的过程是____________________________________
____________________________________________________________________________.
3.函数在某区间上增时,则其导函数在该区间是___________________________________
函数在某区间上减时,则其导函数在该区间时_____________________________________
函数在某区间上增的越来越快,其导函数在此区间是_________________________________
函数在某区间上减的越来越快,其导函数在此区间是_________________________________
【例证题】
例1.判断函数的单调性,并求出单调区间
(1)
(2)
例2.证明函数在(0,2)内是减函数.
例3.课本P26,例3
【作业】
1.是减函数的区间为( )
A.(2,+). B.(- ,2) C.(- ,0) D.(0,2)
2.若函数的图像顶点在第四象限,则其导数的图像可能是( )
3.某工厂八年来某种产品年产量与时间(单位:年)的函数关系如图所示,现有下列四种说法:
前三年该产品产量增长速度越来越快.
前三年该产品产量增长速度越来越慢.
第三年后该产品停止生产.
第三年后该产品年产量保持不变.
其中说明正确的是__________________________________
4.课本P73 9题
5.判断下列函数的单调性,并求出单调区间
(1)
(2)
(3)
(4)
6.证明函数在(0,2)内是减函数.
7.
7.已知汽车在笔直的公路上行驶
如果表示时间时汽车与起点的距离,请标出汽车速度等于0时的点:
如果表示时间时汽车的速度,指出(1)中标出的点的意义是什么.
8. 如图是的图像
由图像说出的变化情况:
说明导函数值的变化情况.
自 助 餐
1.函数的单调增区间为( )
A.(0,+) B.(- ,-1) C.(-1,1) D.(1,+ )
2.在(0,5)上是( )
A.单调增函数 B.单调减函数
C.在(0,)上是递减函数,在(,5)上是递增函数.
D.在(0,)上是递减函数, 在(,5)上是递减函数.
3.在下面哪个区间内是增函数.
A.( B.( C.( , D.(2
4.已知向量,若函数在区间(-1,1)上是增函数,求的取值范围.
5.已知函数均为闭区间上的可导函数,且,证明当时,1.1.2导数的概念
班级:____________姓名:_____________学号:___________
【学习目标】 1.了解瞬时速度,瞬时变化率(导数)的定义。2.掌握瞬时速度,瞬时变化率的求法。【重点、难点】 形成导数的概念,了解导数的内涵。【过程与方法】经历由平均速度到瞬时速度的推导过程,了解并掌握导数的概念及求法。【情感、态度与价值观】1.培养科学探究的意识。2.通过对导数的认识,感受数学科学的无穷魅力,培养学习数学的浓厚兴趣。
一、知识要点填空:
1.瞬时速度
物体在时的瞬时速度就是运动物体在到一段时间内的平均速度,当时的极限,即
2.导数的概念
在处的导数的定义:一般地,在处的瞬时变化率是 我们称之为在处的 记作或即
3求导数的步骤。
①求函数的增量:
②求平均变化率:
③取极限,得导数:
上述求导方法可简记为:一差、二化、三极限。
二、知识点实例探究:
1.掌握求导方法:
例 (1)以初速度为做竖直上抛运动的物体,秒时的高度为,求物体在时刻处的瞬时速度。
(2)求在到之间的平均变化率。
(3)设+1,求,,
2.掌握瞬时变化率的求法及实际意义.
例 将原油精炼为汽油、柴油、塑胶等各种不同产品,需对原油进行冷却和加热。如果在第h时原油的温度为 .计算第2 h和第6 h时,原油的瞬时变化率,并说明意义。
作业:
1.自变量由变到时,函数值的增量与相应自变量的增量之比是函数( )
A 在区间上的平均变化率 B 在处的变化率
C 在处的变化率 D 在区间上的导数
2.下列各式中正确的是( )
A B
C D
3.设,若,则的值( )
A 2 B . -2
C 3 D -3
4.任一做直线运动的物体,其位移与时间的关系是,则物体的初速度是( )
A 0 B 3
C -2 D
5.函数, 在处的导数是
6.,当时 ,
7.设圆的面积为A,半径为,求面积A关于半径的变化率。
掌握导数定义及变形:
8.(1)已知在处的导数为,求及的值。
(2)若,求的值.
9.枪弹在枪筒中运动可以看作匀速运动,如果它的加速度是,枪弹从枪口,射出的时间为,求枪弹射出枪口时的瞬时速度。
掌握瞬时速度的求法:
(选作)某一物体的运动方程如下: ,求此物体在和时的瞬时速度。
自 助 餐
1.一物体的运动方程是,则在一小段时间[2,2.1]内相应的平均速度为( )
A 0.41 B 3 C 4 D 4.1
2.设函数可导,则等于( )
A B 不存在 C D 以上都不对
3.设,则等于( )
A B C D
4.若,,则的值是( )
A 1 B -1 C D
5.设函数,若,则__________。
6.求函数的瞬时变化率。
7.设一物体在秒内所经过的路程为米,并且,试求物体分别在运动开始及第5秒末的速度。
8.已知,求适合的的值。
参考答案:1-4 DCCC.5.1 6. 7.开始的速度为2,第5秒末的速度为42.
8.或§1.2.2基本初等函数的导数公式及导数的运算法则
教学目标:
1.熟练掌握基本初等函数的导数公式;
2.掌握导数的四则运算法则;
3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.
教学重点:基本初等函数的导数公式、导数的四则运算法则
教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用
教学过程:
一.创设情景
函数 导数
四种常见函数、、、的导数公式及应用
二.新课讲授
(一)基本初等函数的导数公式表
函数 导数
(二)导数的运算法则
导数运算法则
1.2.3.
(2)推论:
(常数与函数的积的导数,等于常数乘函数的导数)
三.典例分析
例1.假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价.假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?
解:根据基本初等函数导数公式表,有
所以(元/年)
因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.
例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.
(1)
(2)y =;
(3)y =x · sin x · ln x;
(4)y =;
(5)y =.
(6)y =(2 x2-5 x +1)ex
(7) y =
【点评】
① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.
例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为时所需费用(单位:元)为
求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) (2)
解:净化费用的瞬时变化率就是净化费用函数的导数.
因为,所以,纯净度为时,费用的瞬时变化率是52.84元/吨.
因为,所以,纯净度为时,费用的瞬时变化率是1321元/吨.
函数在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,.它表示纯净度为左右时净化费用的瞬时变化率,大约是纯净度为左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.
四.课堂练习
1.课本P92练习
2.已知曲线C:y =3 x 4-2 x3-9 x2+4,求曲线C上横坐标为1的点的切线方程;
(y =-12 x +8)
五.回顾总结
(1)基本初等函数的导数公式表
(2)导数的运算法则
六.布置作业
1.1.1变化率问题
【学习目标】理解函数平均变化率的概念,会求已知函数的平均变化率。
【知识点实例探究】
例1.国家环保总局对长期超标准排放污物,污染严重而又未进行治理的单位,规定出一定期限,强令在此期限内完成排污治理。下图是国家环保总局在规定的排污达标日期前,对甲、乙两家企业连续检测的结果(W表示排污量),哪个企业治理得比较好?为什么?
例2.已知质点按照规律(距离单位:m,时间单位:s)运动,求:
质点开始运动后3秒内的平均速度;
质点在2秒到3秒内的平均速度。
例3.求函数在区间和的平均变化率。
变式1:求函数在区间(或)的平均变化率,并探索表达式的值(平均变化率)与函数图象之间的关系。
变式2:过曲线上两点P(1,1)和作曲线的割线,求出当时割线的斜率。
【作业】
设函数,当自变量由改变到时,函数的改变量为( )
A B C D
一质点运动的方程为,则在一段时间内的平均速度为( )
A -4 B -8 C 6 D -6
将半径为R的球加热,若球的半径增加,则球的表面积增加等于( )
A B C D
在曲线的图象上取一点(1,2)及附近一点,则为( )
A B C D
在高台跳水运动中,若运动员离水面的高度h(单位:m)与起跳后时间t(单位:s)的函数关系是,则下列说法不正确的是( )
A在这段时间里,平均速度是
B 在这段时间里,平均速度是
C运动员在时间段内,上升的速度越来越慢
D运动员在内的平均速度比在的平均速度小
6.函数的平均变化率的物理意义是指把看成物体运动方程时,在区间内的
7.函数的平均变化率的几何意义是指函数图象上两点、
连线的
8.函数在处有增量,则在到上的平均变化率是
9.正弦函数在区间和的平均变化率哪一个较大?
10.甲、乙两人跑步路程与时间关系以及百米赛跑路程与时间关系分别如图(1)(2)所示,试问:(1)甲、乙两人哪一个跑得较快?(2)甲、乙两人百米赛跑,问接近终点时,谁跑得较快?
11.一水库的蓄水量与时间关系如图所示,试指出哪一段时间(以两个月计)蓄水效果最好?哪一段时间蓄水效果最差?
12.在受到制动后的t秒内一个飞轮上一点P旋转过的角度(单位:孤度)由函数(单位:秒)给出
(1)求t=2秒时,P点转过的角度
(2)求在时间段内P点转过的平均角速度,其中①,②③1.7.1定积分在几何中的应用
【学习目标】会通过求定积分的方法求由已知曲线围成的平面图形的面积;理解定积分的几何意义.
【复习回顾】定积分的概念;微积分基本定理.
【例证题】
例1 计算由曲线所围成图形的面积
思考:求面积的基本步骤?
例2 计算由直线曲线以及轴所围成图形的面积
思考:本题其它解法如何?并比较这些方法.
变式训练:计算由直线曲线以及轴所围成图形的面积
例3 由定积分的性质和几何意义,说明下列式子的值:
练习:=
【作业】
姓名: 学号:
1、由轴及围成的图形的面积为( )
2、与轴围成的图形的面积为( )
3、由曲线和轴围成的曲边梯形的面积=( )
4、由曲线与直线所围成的平面图形的面积为( )
5、如图阴影部分的面积=
6、如图阴影部分的面积=
7、=
8、求下列曲线所围成的图形的面积
(1)(2)
9、求下列曲线所围成的图形的面积
(1)(2)和.
(3)(课本题)
10、过原点的直线与抛物线:所围成的图形面积为,求直线的方程.
11、课本题1.2.2 导数的运算法则(一)
姓名: 学号:
【学习目标】记住两个函数的和、差、积、商的导数运算法则,理解导数运算法则是把一个复杂函数求导数转化为两个或多个简单函数的求导问题;能通过运算法则求出导数后解决实际问题.
【运算法则】(1)= ;
推广:= ;
(2)= ; ();
(3)= . .
【例证题】
例1 求下列函数的导数
(1) (2) (3)
(4)(5)
求下列函数的导数
(1) (2) (3)
(4)
例3 日常生活中的饮用水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将吨水净化到纯净度为时所需费用(单位:元)为
求净化到下列纯度时,所需净化费用的瞬时变化率:(1);(2).
已知函数
(1) 求这个函数的导数;(2)这个函数在点处的切线方程.
【作业】
1、下列四组函数中导数相等的是( )
2、下列运算中正确的是( )
3、设则等于( )
4、对任意的,有则此函数解析式可以为( )
5、函数在点处的切线方程为( )
答案:1—5 、 、 、 、
6、函数的导数 ,
.
7、已知函数且则 .
8、过原点作曲线的切线,则切点坐标为 ,
切线的斜率为 .
9、求曲线在点处的切线的方程.
10、求下列函数的导数
(1) (2) (3)
(4) (5)
11、氡气是一种由地表自然散发的无味的放射性气体.如果最初有克氡气,那么天后,氡气的剩余量为 (注:,
)
(1)氡气的散发速度是多少?(2)的值是什么(精确到)?它表示什么意义?1.3.3函数的最大(小)值与导数
【学习目标】
1.借助函数图像,直观地理解函数的最大值和最小值概念。
2.弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数必有最大值和最小值的充分条件。
3.掌握求在闭区间上连续的函数的最大值和最小值的思想方法和步骤。
【复习回顾】
极大值、极小值的概念:
2.求函数极值的方法:
【知识点实例探究】
例1.求函数在[0,3]上的最大值与最小值。
你能总结一下,连续函数在闭区间上求最值的步骤吗?
变式:1 求下列函数的最值:
(1)已知,则函数的最大值为______,最小值为______。
(2)已知,则函数的最大值为______,最小值为______。
(3)已知,则函数的最大值为______,最小值为______。
(4)则函数的最大值为______,最小值为______。
变式:2 求下列函数的最值:
(1) (2)
例2.已知函数在[-2,2]上有最小值-37,
(1)求实数的值;(2)求在[-2,2]上的最大值。
姓名:_____________ 学号:______________
【作业】
1.下列说法中正确的是( )
A 函数若在定义域内有最值和极值,则其极大值便是最大值,极小值便是最小值
B 闭区间上的连续函数一定有最值,也一定有极值
C 若函数在其定义域上有最值,则一定有极值;反之,若有极值,则一定有最值
D 若函数在定区间上有最值,则最多有一个最大值,一个最小值,但若有极值,则可有多个极值
2.函数,下列结论中正确的是( )
A 有极小值0,且0也是最小值 B 有最小值0,但0不是极小值
C 有极小值0,但0不是最小值
D 因为在处不可导,所以0即非最小值也非极值
3.函数在内有最小值,则的取值范围是( )
A B C D
4.函数的最小值是( )
A 0 B C D
5.给出下面四个命题:
(1)函数的最大值为10,最小值为;
(2)函数的最大值为17,最小值为1;
(3)函数的最大值为16,最小值为-16;
(4)函数无最大值,无最小值。
其中正确的命题有
A 1个 B 2个 C 3个 D 4个
6.函数的最大值是__________,最小值是_____________。
7.函数的最小值为____________。
8.已知为常数),在[-2,2]上有最大值3,求函数在区间
[-2,2]上的最小值。
9.(1)求函数的最大值和最小值;
(2)求函数的极值。
自 助 餐
1.设为常数,求函数在区间上的最大值和最小值。
设,(1)求函数的单调递增,递减区间;
(2)当时,恒成立,求实数的取值范围。
3.已知函数,
(1)当,求函数的最小值;
(2)若对于任意恒成立,试求实数的取值范围。
4.已知函数,
(1)若函数在上是增函数,求实数的取值范围;
(2)若是的极值点,求在上的最大值;
(3)在(2)的条件下,是否存在实数,使得函数的图像与函数的图像恰有3个交点,若存在 ,求出实数的取值范围;取不存在,试说明理由。
5.当时,函数恒大于正数,试求函数的最小值。
1.(1)若在区间上,当时,有最大值;当时,有最小值0。(2)当,在区间上,当时,有最大值;当时,有最小值0。2.(1)递增区间为和,递减区间为;(2)。
3.(1)(2)。4.(1),(2),(3)且。
5.当时,。1.7.2定积分在物理中的应用
【复习回顾】定积分的几何意义;曲线所围平面图形的面积求法.
【学习目标】能熟练利用定积分求变速直线运动的路程.会用定积分求变力所做的功.
【例证题】
一、知识要点:作变速直线运动的物体在时间区间上所经过的路程,等于其速度函数在时间区间上的 ,即 .
例1已知一辆汽车的速度——时间的函数关系为:(单位:)
求(1)汽车行驶的路程;(2)汽车行驶的路程;(3)汽车行驶的路程.
变式1:变速直线运动的物体速度为初始位置为求它在前内所走的路程及末所在的位置.
二、要点:如果物体在变力的作用下做直线运动,并且物体沿着与相同方向从移动到则变力所作的功= .
例2 在弹性限度内,将一弹簧从平衡位置拉到离平衡位置处,求克服弹力所作的功.
变式2:一物体在变力作用下,沿与成方向作直线运动,则由运动到时作的功为 .
【作业】 姓名: 学号:
设物体以速度作直线运动,则它在内所走的路程为( )
2、设列车从点以速度开始拉闸减速,则拉闸后行驶所需时间为( )
3、以初速竖直向上抛一物体,时刻的速度则此物体达到最高时的高度为( )
4、质点由坐标原点出发时开始计时,沿轴运动,其加速度,当初速度时,质点出发后所走的路程为( )
5、如果能拉弹簧,为了将弹簧拉长,所耗费的功为( )
6、一物体在力(力:;位移:)作用下沿与力相同的方向由直线运动到处作的功是( )
7、将一弹簧压缩厘米,需要牛顿的力,将它从自然长度压缩厘米,外力作的功是
8、一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度(单位:)紧急刹车至停止.求
(1)从开始紧急刹车至火车完全停止所经过的时间;
(2)紧急刹车后火车运行的路程.
9、把一个带电量的点电荷放在轴上坐标原点处,形成一个电场,已知在该电场中,距离坐标原点为处的单位电荷受到的电场力的由公式(其中为常数) 确定.在该电场中,一个单位正电荷在电场力的作用下,沿着轴的方向从处移动到处,求电场力对它所做的功.
10、两地相距,物体从以速度(单位:;)朝做直线运动,同时物体以速度朝做直线运动,问两物体何时相遇?相遇地与地的距离是多少?
11、一桥拱的形状为抛物线,已知该抛物线拱的高为常数,宽为常数求抛物线拱的面积.