人教版七年级下册第五章平行线和相交线全章教学案

文档属性

名称 人教版七年级下册第五章平行线和相交线全章教学案
格式 zip
文件大小 3.6MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2012-02-13 12:04:16

图片预览

文档简介

课题:5.1.1 相交线
【学习目标】
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力.毛
2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.
【前置学习】
1.阅读课本P1图片及文字,了解本章要学习哪些知识 应学会哪些数学方法 培养哪些良好习惯 ,
2.准备一张纸片和一把剪刀,用剪刀将纸片剪开,观察剪纸过程,握紧把手时, 随着两个把手之间的角逐渐变小,剪刀两刀刃之间的角引发了什么变化 . 如果改变用力方向,将两个把手之间的角逐渐变大,剪刀两刀刃之间的角又发生什么了变化 .
3.如果把剪刀的构造看作是两条相交的直线, 剪纸过程就关系到两条相交直线所成的角的问题, 阅读课本P2内容,探讨两条相交线所成的角有哪些 各有什么特征
【学习探究】
1.画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角 各对角的位置关系如何 根据不同的位置怎么将它们分类
例如:
(1)∠AOC和∠BOC有一条公共边OC,它们的另一边互为 ,称这两个角互为 。用量角器量一量这两个角的度数,会发现它们的数量关系是
(2)∠AOC和∠BOD (有或没有)公共边,但∠AOC的两边分别是∠BOD两边的 ,称这两个角互为 。用量角器量一量这两个角的度数,会发现它们的数量关系是 。
2.根据观察和度量完成下表:
两直线相交 所形成的角 分类 位置关系 数量关系
3.用语言概括邻补角、对顶角概念.
的两个角叫邻补角。
的两个角叫对顶角。
4.探究对顶角性质.
在图1中,∠AOC的邻补角有两个,是 和 ,根据“同角的补角相等”,可以得出 = ,而这两个角又是对顶角,由此得到对顶角性质:对顶角相等.
注意:对顶角概念与对顶角性质不能混淆,对顶角的概念是确定两角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
你能利用“对顶角相等”这条性质解释剪刀剪纸过程中所看到的现象吗?
【巩固运用】
1.例题:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
提示:未知角与已知角有什么关系?通过什么途径去求这些未知角的度数?,规范地写出求解过程.
2.练习:完成课本P3练习.
【反思总结】
本节课你学到了什么?有什么收获和体会?还有什么困惑?(小组交流,互助解决)
【自我检测】
1.如图所示,∠1和∠2是对顶角的图形有( )毛
A.1个 B.2个 C.3个 D.4个
2.如图(1),三条直线AB,CD,EF相交于一点O, ∠AOD的对顶角是_____,∠AOC的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。
3.如图,直线AB,CD相交于O,OE平分∠AOC,若∠AOD-∠DOB=50°,求∠EOB的度数.
4.如图,直线a,b,c两两相交,∠1=2∠3,∠2=68°,求∠4的度数
5.若4条不同的直线相交于一点,图中共有几对对顶角 若n条不同的直线相交于一点呢
教学反思:
课题:5.1.2 垂线(1)
【学习目标】
1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念, 培养学生用几何语言准确表达的能力。毛
2.了解垂直概念,能说出垂线的性质,会用三角尺或量角器过一点画一条直线的垂线.
【前置学习】
1.如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______
2.改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2、∠3、∠4的大小。
【学习探究】
1.阅读课本P3的内容,回答上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况。
2. 用语言概括垂直定义
两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。
3.垂直的表示方法:
垂直用符号“⊥”来表示,若“直线AB垂直于直线CD, 垂足为O”,则记为__________________,并在图中任意一个角处作上直角记号,如下图。
4.垂直的推理应用:
(1)∵∠AOD=90°( )
∴AB⊥CD ( )
(2)∵ AB⊥CD ( )
∴ ∠AOD=90° ( )
5.垂直的生活应用
观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线思考这些给大家什么印象 找一找:在你身边,还能发现哪些“垂直”的实例?
【画图实践】
1.用三角尺或量角器画已知直线L的垂线.
(1)已知直线L,画出直线L的垂线,能画几条 L
小组内交流,明确直线L的垂线有_________条,即存在,但位置有不______性。
(2)怎样才能确定直线L的垂线位置呢
在直线L上取一点A,过点A画L的垂线, 能画几条 再经过直线L外一点B画直线L的垂线,这样的垂线能画出几条
B .
. L L
A
从中你能得出什么结论 ____________________________________________
2、变式训练,请完成课本P5练习第2题的画图。
画完图后,归纳总结:画一条射线或线段的垂线, 就是画它们所在______的垂线.
【反思总结】
本节课你你有那些收获?还有什么疑难需老师或同学帮助解决?
【自我检测】(有困难同学可以选做)
(一)、判断题.
1.两条直线互相垂直,则所有的邻补角都相等.( )
2.一条直线不可能与两条相交直线都垂直.( )
3.两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )
4.两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).
(二)、填空题.
1.如图1,OA⊥OB,OD⊥OC,O为垂足,若∠AOC=35°,则∠BOD=________.
2.如图2,AO⊥BO,O为垂足,直线CD过点O,且∠BOD=2∠AOC,则∠BOD=________.
3.如图3,直线AB、CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB
的位置关系是_________.
(三)、解答题.
1.已知钝角∠AOB,点D在射线OB上.
(1)画直线DE⊥OB (2)画直线DF⊥OA,垂足为F.
2.已知:如图,直线AB,射线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD 与OE的位置关系.
3.你能用折纸方法过一点作已知直线的垂线吗
课题:5.1.2 垂线(2)
【学习目标】
1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念, 培养学生用几何语言准确表达的能力。毛
2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离。
【前置学习】
1.上学期我们学习过“什么什么最短”的几何知识,还记得吗 。
2.思考课本P5图5.1-8中提出问题:要把河中的水引到农田P处, 如何挖渠能使渠道最短
3.自学课本P5-6页的内容后,你能解决2中提出的问题吗?若不能,有哪方面的困惑?
【学习探究】
1.问题转化
如果把小河看成是直线L,把要挖的渠道看成是一条线段,则该线段的一个端点自然是农田P,另一个端点就是直线L上的某个点。那么最短渠道问题会变成是怎样的数学问题?
(提示:用数学眼光思考:在连接直线L外一点P与直线L 上各点的线段中,哪一条最短 )
2.学具感受
自制学具:在硬纸板上固定木条L,L外有一点P,另一根可以转动的木条a一端固定在点P,使木条a与L相交,左右摆动木条a,会发现它们的交点A随之变化,线段PA 长度也随之变化.观察:当PA最短时,直线a与L的位置关系如何 用三角尺检验一下。
3.画图验证
(1)画直线L,在L外取一点P;
(2)过P点出PO⊥L,垂足为O;
(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;
(4)用度量法比较线段PO、PA1、PA2、PA3……的大小,.得出线段 最小。
4.归纳结论.
连接直线外一点与直线上各点的所有线段中, .简单说成: .
5.知识类比
(1)垂线段与垂线有何区别联系?
(2)垂线段与线段有何区别与联系?
6.解决问题:
此时你会解决课本P5图5.1-8中提出的问题吗?在图形中画出“最短渠道”的位置。
7.探究“点到直线的距离”?定义:
(1) 学习课本P6第二段内容回答什么叫“点到直线的距离”?默写一遍:
叫做点到直线的距离。
(2)对照课本P5图5.1-9,回答线段PO、PA1、PA2、PA3、PA4……中,哪一条或几条线段的长度是点P到直线L的距离?
(3) 如果课本P5图5.1-8中比例尺为1:100000,试计算农田P到小河的距离有多远?
【运用举例】
例1:判断对错,并说明理由:.
(1)直线外一点与直线上的一点间的线段的长度是这一点到这条直线的距离.
(2)如图,线段AE是点A到直线BC的距离.
(3)如图,线段CD的长是点C到直线AB的距离.
例:2:已知直线a、b,过点a上一点A作AB⊥a,交b于点B,过B作BC⊥b交a于点C.请说出哪一条线段的长是哪一点到哪一条直线的距离 并且用刻度尺测量这个距离.
【反思总结】
本节课你学到了哪些知识或方法?还有什么困惑?相互交流一下。
【自我检测】
1.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C到AB的距离是_______,点A到BC的距离是________,点B到CD 的距离是_____,A、B两点的距离是_________.
2.如图,在线段AB、AC、AD、AE、AF中AD最短.小明说垂线段最短, 因此线段AD的长是点A到BF的距离,对小明的说法,你认为对吗?
3.用三角尺画一个是30°的∠AOB,在边OA上任取一点P,过P作PQ⊥OB, 垂足为Q,量一量OP的长,你发现点P到OB的距离与OP长的关系吗
教学反思:
课题:5.1.3同位角、内错角、同旁内角
【学习目标】
1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛
2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.
【前置学习】
1.指出右图中所有的邻补角和对顶角?
2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗
若都不是,请自学课本P6内容后回答它们各是什么关系的角
【学习探究】
1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成“直线 和直线 与直线 相交” 也可以说成“两条直线 , 被第三条直线 所截”.构成了小于平角的角共有 个,通常将这种图形称作为“三线八角”。其中直线 , 称为两被截线,直线 称为截线。
2. 如图⑶是“直线 , 被直线 所截”形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如“ ” 字型.具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如“ ” 字型.具有这种关系的一对角叫同旁内角。
3.找出图⑶中所有的同位角、内错角、同旁内角。
4.讨论与交流:
(1)“同位角、内错角、同旁内角”与“邻补角、对顶角”在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:“F” 字型,“同旁同侧”
“三线八角” 内错角:“Z” 字型,“之间两侧”
同旁内角:“U” 字型,“之间同侧”
【运用举例】
例1.如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
例2.课本P7的例题
【巩固练习】
【自我检测】
⒈如图⑷,下列说法不正确的是( )
A、∠1与∠2是同位角 B、∠2与∠3是同位角
C、∠1与∠3是同位角 D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.
⒊如图⑹, 直线DE截AB, AC, 构成八个角:
指出图中所有的同位角、内错角、同旁内角.
②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)
教学反思:
教学课题:5.2.1平行线
学习目标:1.理解平行线的意义,了解同一平面内两条直线的两种位置关系;
2.理解并掌握平行公理及其推论的内容;
3.会根据几何语句画图,会用直尺和三角板画平行线;
4.了解在实践中总结出来的基本事实的作用和意义,并初步感受公理化思想。
学习重点:探索和掌握平行公理及其推论.
学习难点:对平行线本质属性的理解,用几何语言描述图形的性质
学具准备:分别将木条a、b与木条c钉在一起,做成学具,直尺,三角板
学习过程:
一、学前准备
1、预习疑难: 。
2、①两条直线相交有 个交点。
②平面内两条直线的位置关系除相交外,还有哪些呢?
二、探索与思考
(一)平行线
1、观察思考:展示学具,在转动a的过程中,有没有直线a与直线b
不相交的位置呢?
2、定义及表示方法:在同一平面内, 是平行线。
直线a与b平行,记作 。
3、对平行线概念的理解:定义中强调“在同一平面内”,为什么要强调这句话。
在同一平面内,两条直线有几种位置关系 在空间中,是否存在既不平行又不相交的两条直线 (提示:用长方体来说明 )
4、总结:同一平面内两条直线的位置关系有两种:(1) (2) 。
请你举出一些生活中平行线的例子。
(二)画平行线
工具:直尺、三角板
方法:一“落”;二“靠”;三“移”;四“画”。
3、请你根据此方法练行线:
已知:直线a,点B,点C.
(1)过点B画直线a的平行线,能画几条
(2)过点C画直线a的平行线,它与过点B的平行线平行吗
(三)平行公理及推论
1、思考:上图中,①过点B画直线a的平行线,能画 条;
②过点C画直线a的平行线,能画 条;
③你画的直线有什么位置关系? 。
2、平行公理
①公理内容: 。
②比较平行公理和垂线的第一条性质:
共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.
不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.
3、推论: 。
①符号语言:∵b∥a,c∥a(已知)
∴b∥c(如果两条直线都与第三条直线平行,
那么这两条直线也互相平行)
②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗 为什么
三、练一练:教材13页练习(在书上完成)
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
五、自我检测:
(一)选择题:
1.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是( )
A.1 B.2 C.3 D.4
2、下列推理正确的是 ( )
A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d
C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c
3.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的 个数为( )
A.0个 B.1个 C.2个 D.3个
4.下列说法正确的有( )
①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;
③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.
A.1个 B.2个 C.3个 D.4个
(二)填空题:
1.在同一平面内,两条直线的位置关系有_______ __.
2.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的
另一条必__________.
3.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为_____ ___.
4.两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个.
5、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。
6、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:
(1)L1与L2 没有公共点,则 L1与L2 ;
(2)L1与L2有且只有一个公共点,则L1与L2 ;
(3)L1与L2有两个公共点,则L1与L2 。
7、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。
8、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。
9、如图所示,∵AB∥CD(已知),经过点F可画EF∥AB
∴EF∥CD( )
六、拓展延伸
1.根据下列要求画图.
(1)如图(1)所示,过点A画MN∥BC;
(2)如图(2)所示,过点P画PE∥OA,交OB于点E,过点P画PH∥OB,交OA于点H;
(3)如图(3)所示,过点C画CE∥DA,与AB交于点E,过点C画CF∥DB,与AB延长线交 于点F.
(4)如图(4)所示,过点M,N分别画直线AB的平行线, 判断所画的两条直线的位置关系.
(1) (2) (3) (4)
2、如图所示,哪些线段是互相平行的?并用“//”表示出来。
3、如图,长方体ABCD-EFGH,
(1)图中与棱AB平行的棱有哪些?
(2)图中与棱AD平行的棱有哪些?
(3)连接AC、EG,问AC、EG是否平行。
4、[探究创新]
平面内有若干条直线,当下列情形时,可将平面最多分成几部分。
(1)有一条直线时,最多分成2部分。
(2)有两条直线时,最多分成2+2部分。
(3)有三条直线时,最多分成 部分。
……
(4)有n条直线时,最多分成 部分。
5、如图所示,a∥b,a与c相交,那么b与c相交吗 为什么
5.2.2直线平行的条件(一)
[教学目标]
借助用直尺和三角板画平行线的过程,,得出直线平行的条件.
会用直线平行的条件来判定直线平行.
激发学生学习数学的兴趣.
[教学重点与难点]重点: 理解直线平行的条件.
难点: 直线平行的条件的应用.
[教学设计]
提问复习题:
1.如图,已知四条直线AB、AC、DE、FG
(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.
(2) ∠3与∠2是直线_____和直线____被直线________所截而成的________角.
(3) ∠5与∠6是直线_____和直线____被直线________所截而成的________角.
(4) ∠4与∠7是直线_____和直线____被直线________所截而成的________角.
(5) ∠8与∠2是直线_____和直线____被直线________所截而成的________角.
2.下面说法中正确的是 ( ).
(1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种
(2) 在同一平面内, 不垂直的两条直线必平行
(3) 在同一平面内, 不平行的两条直线必垂直
(4) 在同一平面内,不相交的两条直线一定不垂直
3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.
导言:
上节课我们学行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理,在此基础上,我们再来研究直线平行的条件.
新课:直线平行的条件
演示用直尺和三角板画平行线的过程,
如果∠4+∠2=180°, a∥ b吗
三种方法可以简单地说成:
例题 已知:如图,直线AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,试说明CD ∥EF.
解:因为∠1=∠2,所以 AB ∥CD.
又因为 ∠3+∠1=180°,所以 AB ∥ EF.
从而 CD ∥EF (为什么 ).
课堂练习:
1.下列判断正确的是 ( ).
因为∠1和∠2是同旁内角,所以∠1+∠2=180°
B.因为∠1和∠2是内错角,所以∠1=∠2
因为∠1和∠2是同位角,所以∠1=∠2
D..因为∠1和∠2是补角,所以∠1+∠2=180°
2.如图:(1) 已知∠1=65°, ∠2=65°,那么DE与 BC平行吗 为什么
(2)如果∠1=65°, ∠3=115°,那么AB与DF平行吗 为什么
(3) )如果∠4=60°, ∠2=65°,那么DE与BC平行吗 为什么
3.
4.如图所示:
(1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________;
(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________;
(3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________;
(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,
因此可知∠4+∠5= ____,所以可确定 _______∥______,其理由是_________________;
(5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________.
5.如图,(1)如果∠1=________,那么DE∥ AC;
(2) 如果∠1=________,那么EF∥ BC;
(3)如果∠FED+ ∠________=180°,那么AC∥ED;
(4) 如果∠2+ ∠________=180°,那么AB∥DF.
6.
7.
课后作业:习题5.2 第1,2,4题.
补充练习:
已知:如图,AB ∥CD,EF分别交 AB、CD于 E、F,EG平分∠ AEF , FH平分∠ EFD EG与 FH平行吗?为什么?
教学反思
直线平行的条件(第1课时)
直线平行的条件(一)
教学目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.
2.经历探究直线平行的条件的过程,掌握直线平行的条件,领悟归纳和转化的数学思想方法.
重点、难点
探索并掌握直线平行的条件是本课的重点也是难点.
教学过程
一、复习引入
1.填空:经过直线外一点,________与这条直线平行.
2.画图:已知直线AB,点P在直线AB外,用直尺和三角尺画过点P的直线CD,使CD∥AB.
3.反思:在用直尺和三角形画平行线过程中,三角尺起着什么样的作用.
学生讲出是为画∠PHF,使所画的角与∠BGF相等.
教师指出既然两个角相等与两条直线平行能联系起来, 那么这两个角具有什么样的位置关系,我们是否得到了一个判定两直线平行的方法 这是本课要研究的内容之一.
二、探索直线平行的条件
1.画出课本图5.2-5的简化图形,分析∠1、∠2的位置关系.
(1)让学生先描述∠1、∠2的方位.
(2)教师指出像∠1、∠2这样分别位于直线CD、AB的下方,又在直线EF的右侧, 也就是位置相同的两个角叫做同位角.
(3)让学生识别图中其他的同位角,并标记出它们,要求正确而又不遗漏.
(4)教师强调:同位角是具有特殊位置关系的两个角, 它不同于对顶角和邻补角.同位角都有一条边在截线EF上.
2.归纳利用同位角判定两条直线平行的方法.
(1) 学生根据同位角的意义以及平推三角尺画出平行线活动中叙述判定两条直线平行的方法.
教师引导学生正确表达平行线的判定方法1,并板书.
方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单记为:同位角相等,两条直线平行.
(2)教师引导学生,结合图形用符号语言表达两直线平行的判定方法1: 如果∠1=∠2,那么AB∥CD.
教师强调判定两直线平行方法1的条件中有两层意思:第一层这两个角是这两条被第三条直线所截而成的一对同位角;第二层这两个角相等两者缺一不可.
(3)简单应用.
①教师表演木工用每尺画平行线过程,让学生说出用角尺画平行线的道理(结合P15图5.2-7).
教师规范说理过程:因为∠DCB与∠FEB是直线CD、EF被AB所截而成的同位角,而且∠DCB=∠FEB,即同位角相等,根据直线平行判定方法,从而CD∥EF.
3.利用教具模型认识内错角和同旁内角.
(1)教师展示教具模型,并在黑板上画出右图图型,指出在直线a、b被直线c所截成的角中,∠1和∠2是同位角,∠2与∠3、∠2与∠4虽然不是同位角, 但是它们又是具有某种位置关系的两个角,大家能叙述∠2与∠3有怎样的位置关系 ∠2和∠4呢
教师引导学生正确地叙述,如∠2与∠3位在直线a,b的内部,又分别位于直线c的两侧,∠2与∠4位在直线a,b内部,都在直线c的右侧(同侧).
(2)教师转动直线a或者直线b,再问学生∠2与∠3,∠2与∠4 的度数是否发生变化 它们之间的位置是否发生改变
学生回答后,教师指出像∠2和∠3这样的两个角叫做内错角,像∠2和∠4这样的两个角叫做同旁内角.
(3)让学生识别图中其他的内错角和同旁内角,标记出它们.
(4)学生概括由直线a、b被直线c所截成的八个角中有四对的同位角, 两对的内错角、两对的同旁内角.
4.探索两条直线平行的其它方法
(1)演示教具,使学生直觉当内错角相等时,两条直线平行.
(2)让学生思考:为什么内错角相等时,两条直线平行 你能用学过的两直线平行的判定方法1来说明吗
学生若有困难,教师可提示学生通过内错角和同位角之间的关系把条件∠2=∠3转化为∠1=∠2.
教师规范说理过程:因为∠2=∠3,而∠3=∠1(对顶角相等),所以∠1=∠2, 即同位角相等,因此a∥b.
(3)师生归纳判定两条直线平行的方法2,教师板书:
两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单记为:内错角相等,两直线平行.
教师引导学生结合图形用符号语言表达方法2:如果∠2=∠3,那么a∥b.
(4)讨论:同旁内角数量上满足什么关系时,两直线平行
①学生猜想,可借助于教具.先排除相等,当∠4是锐角时,∠2是钝角才有可能使a∥b,进一步观察发现:如果同旁内角互补时,两条直线平行,即如果∠2+∠4=180 °,那么a∥b.
②学生利用平行判定方法1或方法2来说明猜想正确.
教师根据学生说理,再准确地板书:
因为∠4+∠2=180°,而∠4+∠1=180°,根据同角的补角相等,所以有∠2=∠1, 即同位角相等,从而a∥b.
因为∠4+∠2=180°,而∠4+∠3=180°,根据同角的补角相等,所以有∠3=∠2, 即内错角相等,从而a∥b.
③师生归纳两条直线平行的判定方法3,教师板书:
两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.
简单记为:同旁内角互补,两直线平行.
综合图形,用符号语言表达:如果∠4+∠2=180°,那么a∥b.
三、巩固练习
课本P17练习.
四、作业
1.作业P18.1,2,3,4.
2.补充设计:
一、判断题
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )
2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )
二、填空
1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(1) (2) (3)(
2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、选择题
1.如图3所示,下列条件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右图,由图和已知条件,下列判断中正确的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.
答案:
一、1.∨ 2.∨
二、1.∠1=∠5求∠2=∠6或∠4=∠8,a∥b,同位角相等,两直线平行,或∠2=∠8,a∥b,内错角相等,两直线平行,180°,∠3+∠8=180°,同旁内角互补,两条直线平行. 2.BC∥AD,AD∥BC,∠BAD,∠BCD
三、1.D 2.D 四、a∥b,可以用三种平行线判定方法加以说明,其一:因为∠1+∠2=180°,又∠3=∠1(对顶角相等)所以∠2+∠3=180°,所以a∥b(同旁内角互补,两直线平行),其他略.
5.2.2直线平行的条件(第2课时)
直线平行的条件(二)
教学目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.
2.经历分析题意,说理过程,能灵活地选用直线平行的规定方法进行说理.
重点、难点
重点:直线平行的条件的应用.
难点:选取适当判定直线平行的方法进行说理是重点也是难点.
教学过程
一、画图实践活动
1.回忆怎样用移动三角尺的方法画两条平行线的, 其中直尺和三角尺的作用是什么
师生交流后得出:直尺与已知直线构成等于三角尺度数的角∠1, 确定第三条直线即截线的位置,移动三角尺再形成一个与∠1相等的同位角∠2.
2.教师提出问题:学行线后,大家还能想出过一点画一条直线的平行线的新方法吗
学生思考、小组交流,教师根据学生的想法在全班交流每种画法的方法步骤、 定义.如果学生没有想到的,教师可按课本P36李强、张明、王玲同学的做法,组织学生分析做法要点和合理性,正确性.
对于李强画法,教师使学生明白,画过点P的直线b是确定直线b的位置和确定∠1的大小,其次点P为顶点,作与∠1相等的同位角∠2,从而画出过点P的直线c, 根据平行判定1,可知c∥a.
对于张明做法,学生应明确本做法就画一个一边在直线a的长方形PQRS, 由于长方形的对边平行,从而b∥a.
对于王玲做法,学生应明确第一次折纸是过点P作直线a的垂线b, 第二次折纸是过点P作直线b的垂线c,至于a∥c的理由在例题讲解中说明.
3.教师再提出问题:你还有其他方法吗 动手试一试与同学们交流一下.
教师发现学生新的做法,组织学生交流,并归纳新的方法主要是:
(1)用尺规画过点P的与∠1相等的内错角∠3,达到作c∥a;
(2)再尺规画有别于李强的其他对同位角,达到作c∥a;
(3)用直尺、三角尺画出与王玲一样的线条,达到作c∥a.
在解释学生做法的合理性时,要求学生能利用“同位角相等,两直线平行”或“内错角相等,两直线平行”去说明.
二、例题讲解
例:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗 为什么
教师:这个问题的研究,就是回答了王玲折线方法的合理性.
首先王玲对折直线a,使折线过点P,于是把一个平角分成两个相等的∠1、∠2, 因为∠1+∠2=180°,所以∠1=∠2=90°.
其次王玲再对折折线b,使折线c过点P,很显然∠3=90°.
由垂直定义,可知a⊥b,c⊥b.
以上分析使学生明了垂直与直角总联系在一起.至于要判定两条直线是否平行,先考虑学过哪些判定平行线的方法,题中的条件与某种判定方法的条件是否相同
学生先口述判断与理由,教师纠正.并规范板书两步推理过程:
如课本P17图5.2-10.
因为b⊥a,c⊥a,
所以∠1=∠2=90°,
从而b∥c.
教师说明:这个道理过程有两个因为……所以…… . 第一个“因为”“所以”是根据垂直定义,第二个只写出“所以”的内容b∥c,中间省略一个“因为”的内容,这个内容就是第一个“所以”中的∠1=∠2.这样处理是使说理表达更简练, 第二个“因为”、“所以”是根据同位角相等,两直线平行.
例题讲解后,师提问:你还能利用其他方法说明b∥c吗
教师鼓励学生模仿课本方法用图(1)内错角相等的方法写出理由,用图(2) 同旁内角互补的方法写出理由.
(1) (2)
如果∠1,∠2不是同位角,也不是内错角、同旁内角,如图(3), 教师启发学生用化归思想将它转化为已知问题来解决,并且有条理地陈述理由:
因为a⊥b,c⊥a, (3)
所以∠1=90°,∠2=90°.
因为∠3=∠1=90°,
从而b∥c(同位角相等,两直线平行).
三、巩固练习
1.课本P18思考,教师要求学生说出尽可能多的判别方法和理由.
2.已知:如图,直线a、b被直线c所截,且∠1+∠2=180°,那么直线a与b平行吗 为什么
四、作业
1.课本作业P19.5,6,8,9,10,12.
2.补充作业:
一、填空题.
1.如图,点E在CD上,点F在BA上,G是AD延长线上一点.
(1)若∠A=∠1,则可判断_______∥_______,因为________.
(2)若∠1=∠_________,则可判断AG∥BC,因为_________.
(3)若∠2+∠________=180°,则可判断CD∥AB,因为____________.
(第1题) (第2题)
2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.
二、选择题.
1.如图,下列判断不正确的是( )
A.因为∠1=∠4,所以DE∥AB
B.因为∠2=∠3,所以AB∥EC
C.因为∠5=∠A,所以AB∥DE
D.因为∠ADE+∠BED=180°,所以AD∥BE
2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )
A.∠2=∠4 B.∠1=∠4
C.∠2=∠3 D.∠3=∠4
三、解答题.
1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗 与同伴说说你的折法.
2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗 试用两种方法说明理由.
答案:
一、1.(1)CD∥AB, 同位角相等,两直线平行 (2)∠C,内错角相等, 两直线平行 (2)∠EFB,同旁内角互补,两直线平行 2.108°
二、1.C 2.D
三、1.把四边形纸某条边分两次折叠,那么两条折线是两条平行线;如果要求折出两条平行线分别过某两点,那么首先过这两点折出一条直线L,然后分别过这两点两次折叠直线L, 则所折出的线就是所求的平行线 2.平行 提求:第一种先说理∠2=∠C, 第二种说明∠DBC与∠C互补.
5.3.1平行线性质(1)
学习目标:1.理解平行线的性质和判定的区别.
2.掌握平行线的三个性质,并能运用它们作简单的推理.
重点:平行线的三个性质.
难点:平行线的三个性质和怎样区分性质和判定.
关键:能结合图形用符号语言表示平行线的三条性质
一、自主学习
1.实验观察,发现平行线第一个性质
请画出下图进行实验观察.
设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?
请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?
平行线性质1(公理):
2.演绎推理,发现平行线的其它性质
(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.
求证:∠1= ∠2.(要求写出过程)
平行线的性质2 (定理)
(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.
求证:∠1+∠2=180°.(要求写出过程)
平行线的性质3 (定理)
3.请写出平行线判定与性质的区别与联系
二、例题
三、练习1、2
四、探究
1.如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.
求证:∠1+∠2=90°.
证明:因为 AB∥CD,
2.如图所示,已知:∠1=∠2,
求证:∠3+∠4=180°.
五作业:5.3习题3、4、5、7、12、13
补充:
1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.
五、学后反思:
课题:5.3 2平行线性质
学习目标:
1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力
2理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论
3能够综合运用平行线性质和判定解题
重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念
难点:平行线性质和判定灵活运用
一.复习
1.平行线的判定方法有哪些?
2.平行线的性质有哪些?
3.完成下面填空
已知:BE是AB的延长线,AD//BC,AB//CD,若 则各是多少度。
4. 那么a,c的位置关系如何?
二.自主学习
1.例1,已知a//c,直线b与c垂直吗?为什么?
例2如图是一块梯形铁片的残余部分,量得,梯形另外两个角分别是多少度?
做出的方格纸的一部分,线段…都与两条平行线垂直吗?它们的长度相等吗?
由此你得到:两条平行线的距离:
问题:AB//CD,在CD上任取一点E,作垂足F,问EF是否垂直DC?垂线段EF是平行线AB、CD的距离吗?
3.命题和它的构成(合作交流)
下列语句,分析语句的特点
(1)如果两条直线都与第三条直线平行,那么这两条直线也平行。
(2)对顶角相等
(3)等式两边同加上同一个数,结果仍是等式
(4)如果两条直线不平行,那么同位角不相等
这些句子都是对某一件事情作出“是”或“不是”的判断
命题:
(1)命题的组成:
(2)形式:
三.随堂练习
1.“等式两边乘以同一个数,结果仍是等式”是命题吗?如果是,它的题设和结论分别是什么?
2.实践 与探究(大家讨论)
(1)学生操作:用三角尺和直尺画平行线,做成一张个格子的方格纸。观察并思考:
2举出一些命题的例子
四.作业
课本P25
课题:平行线的性质和判定的综合运用 课型:复习
学习目标:1.分清平行线的性质和判定.已知平行用性质,要证平行用判定.
2.能够综合运用平行线性质和判定解题.
学习重点:平行线性质和判定综合应用
学习难点:平行线性质和判定灵活运用
学习过程:
一、学前准备
1、预习疑难: 。
2、填空:①平行线的性质有哪些?
②平行线的判定有哪些?
二、平行线的性质与判定的区别与联系
1、区别:性质是:根据两条直线平行,去证角的相等或互补.
判定是:根据两角相等或互补,去证两条直线平行.
2、联系:它们都是以两条直线被第三条直线所截为前提;
它们的条件和结论是互逆的。
3、总结:已知平行用性质,要证平行用判定
三、应用
(一) 例1:如图,已知:AD∥BC, ∠AEF=∠B,求证:AD∥EF。
1、分析:
(执果索因)从图直观分析,欲证AD∥EF,只需∠A+∠AEF=180°,
(由因求果)因为AD∥BC,所以∠A+∠B=180°,又∠B=∠AEF,
所以∠A+∠AEF=180°成立.于是得证
2、证明:∵ AD ∥BC(已知)
∴ ∠A+∠B=180°( )
∵ ∠AEF=∠B(已知)
∴ ∠A+∠AEF=180°(等量代换)
∴ AD∥EF( )
3、思考:在填写两个依据时要注意什么问题?
4、推广:你有其他方法证明这个问题吗?你写出过程。
(二)练一练:
1、如图,已知:AB∥DE,∠ABC+∠DEF=180°, 求证:BC∥EF。
2、如图,已知:∠1=∠2,求证:∠3+∠4=180o
3、如图,已知:AB ∥CD,MG平分∠AMN ,NH平分∠DNM,求证:MG∥NH。
4、如图,已知:AB∥CD,∠A=∠C, 求证:AD∥BC。
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?2、预习时的疑难解决了吗?
五、自我检测:
1、如图1,AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:
因为∠ECD=∠E,
所以CD∥EF( )
又AB∥EF,
所以CD∥AB( ). (1)
2、下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内 错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是 ( )
A.① B.②和③ C.④ D.①和④
3、如图,平行光线AB、DE照射在平面镜上,经反射得到光线BC与EF,已知∠1= ∠2,
∠3= ∠4,则光线BC与EF平行吗?为什么?
4、如图,已知B、E分别是AC、DF上的点,∠1=∠2,∠C=∠D.
(1)∠ABD与∠C相等吗 为什么.
(2)∠A与∠F相等吗 请说明理由.
5、如图,已知EAB是直线,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.
拓展延伸
1.已知,如图1,∠AOB纸片沿CD折叠,若O′C∥BD,那么O′D与AC平行吗 请说明理由.
2、如图,EF⊥AB,CD⊥AB,∠EFB=∠GDC,求证:∠AGD=∠ACB。
3、探索发现: 如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你 从所得的四个关系中任选一个加以说明.(提示:过点P做平行线)
(1) (2) (3) (4)
变式1:如图所示,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.
变式2:如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于( )
A.180° B.360° C.540° D.720°
课题:课题:5.3 .3命题
学习目标:
了解命题、定义的含义;对命题的概念有正确的理解。会区分命题的条件和结论。知道判断一个命题是假命题的方法。
结合实例意识到证明的必要性,培养说理有据,有条理地表达自己想法的良好意识。
重点与难点
重点: 找出命题的条件(题设)和结论。
难点: 命题概念的理解。
导学过程
一、复习
我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等。根据我们已学过的图形特性,试判断下列句子是否正确。
1、如果两个角是对顶角,那么这两个角相等;
2、两直线平行,同位角相等;
3、同旁内角相等,两直线平行;
4、平行四边形的对角线相等;
5、直角都相等。
二、探究新知
(一)阅读课本内容,回答:什么是命题、真命题与假命题?

(二)填空:
在数学中,许多命题是由 两部分组成的。题设是 ;结论
,这样的命题常可写成“ ”的形式。用“ ”开始的部分就是题设,而用“ ”开始的部分就是结论。例如,在命题1中,“ ”是题设,“ ”就是结论。
有的命题的题设与结论不十分明显,可以将它写成“如果.........,那么...........”的形式,就可以分清它的题设和结论了。例如,命题5可写成“ 。”
(三)自主探究
把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论,再判断它是真命题,还是假命题。
(1)对顶角相等;
(2)如果a> b,b> c, 那么a=c;
(3)菱形的四条边都相等;
(4)全等三角形的面积相等。
(四)假命题的证明(拓广探索)
要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为“举反例”。
例如,要证明命题“一个锐角与一个钝角的和等于一个平角”是假命题,只要举出一个反例:60度角是锐角,100度角是钝角,但它们的和不是180度即可。
三、随堂练习
课本P65练习第1、2题。
四、总结
1、什么叫命题?什么叫真命题?什么叫假命题?
2、命题都可以写成“ ”的形式。
3、要判断一个命题是假命题,只要 就行了。
五、布置作业
课本习题19.1第1题、第2题。
5.4 .1 平移(第1课时)
平移(一)
教学目标
1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。毛
2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.
重点、难点
重点:探索并理解平移的性质.
难点:对平移的认识和性质的探索.
教学过程
一、引入新课
1.教师打开幻灯机,投放课本图5.4-1的图案.
2.学生观察这些图案、思考并回答问题.
(1)它们有什么共同的特点
(2)能否根据其中的一部分绘制出整个图案
3.师生交流.
(1)这引进美丽的图案是由若干个相同的图案组合而成的,图5.4-1 上一排左边的图案(不考虑颜色)都有“基本图形”;中间一个正方形,上、下有正立与倒立的正三角形,如图(1);上排中间的图案(不考虑颜色)都有“基本图形”:正十二边形, 四周对称着4个等边三角形,如图(2);上排右边的图案(不考虑颜色)都有“基本图形”;正六边形,内接六角星,如图(3);下排的左图中的“基本图形”是鸽子与橄榄枝; 下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.
(1) (2) (3)
(2)根据上述的特点,这五幅美丽的图案可以根据上述的分析的“基本图形”按照一定的要求绘制出整个图案。
教师将12张事先准备好的图(1)的图片(涂好颜色、并有序重叠在一起);然后从上而下抽取一张图片陆续移动,最终形成如图5.4-1上排左图图案,教师的操作演示,让学生再次体
会到许多美丽的图案是由若干个相同图案合而成, 同时教师的操作使学生感受到图形的平移,初步认识了图形的平移.
二、进一步认识平移,探究枰移的基本性质
1.学生描图操作.
(1)提出问题:如何在一张半透明的纸上,画出一排形状大小如课本图5.4-2的雪人
(2)描图前教师说明:为了保证“按同一方向陆续移动”半透明纸, 大家应该在雪人帽顶的上方约1厘米处画一条与书右边缘垂直的直线,半透明纸也应画一条直线,画图中要始终保持两条直线重合.
(3)学生描图,描出三个雪人图.
2.观察、思考.
(1)学生在自己所画出的相邻两个雪人中,找出三组对应点:鼻尖A与A′, 帽顶B与B′,纽扣C与C′,连接这些对应点.
(2)观察这些线段,它们的位置关系如何 数量关系呢
学生用平推三角尺方法验证三条线段是否平行, 用刻度尺度量三条线段是否相等.
教师在黑板上板书学生的发现:
AA′∥BB′∥CC′,且AA′=BB′=CC′
(2)学生再作出连接一些其他对应点的线段,验证前面发现是否正确
3.师生归纳
(1)描图起什么作用
描出的图形与原来图形的形状、大小完全相同, 在半透明纸上描出的所有图形形状、大小完全相同.
(2)在书上和半透明纸画直线而且要求描图时,两条直线要垂合. 这样做法起什么作用.
保证在半透明纸上所画的图形沿直线所规定的方向移动.
(3)就半透明纸所画的图形归纳,教师板书:
①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.
②新图形中的每一个点,都是由原图形中的某一点移动后得到的,这两个点是对称点,连接各组对应点的线段平行且相等.
4.给出平移的定义.
定义:一个图形沿着某个方向移动一定的距离,图形的这种移动,叫做平移变换,简称平移.
教师以课本图5.4-1上排左图为例解说:
把“基本图形”说成“橄榄形”。第一排左边的“橄榄形”沿着水平方向向左平移一个正方形边长的距离得第二个“橄榄形”,平移二个正方形边长的距离得第三个“橄榄形”……要想平移得第二批的“橄榄形”,平移的方向不再是水平方向,每一次平移时,方向在变化、平移的距离也在变化。
关于平移的方向,可结论课本图5.4-5说明图形平移方向,不一定是水平的.
教师引导学生举出生活一引进利用平移的例子, 如人在电梯上两个不同时刻之间的位置关系,坐登山缆车人在吊箱里两个不同时刻的位置关系都是平移;黑板报中花边设计利用了平移,奥运会五环旗图案五环之间通过平移得到……
5.例题讲解.
例:如图(4)-1,平移三角形ABC,使点A移动到点A′.画出平移后的三角形A′B′C′.
教师:“点A移到点A′”这句话告诉我们图形平移的方向是A到A′的方向, 平移的距离为线段AA′的长,根据这两个要素就可以确定点B、C的对应点B′、C′,从而画出△A′B′C′.
(4)-1 (4)-2
解:如图(4)-2,连接AA′,分别过B、C作AA′的平行线L、L′,在L上截取BB ′=AA′,在L′上截取CC′=AA′,连接A′C′,A′B′,B′C′.则△A′B′C ′为所求画的三角形.
三、巩固练习
如图,通过平移,你能用它组成什么图案 试一试,把你的图案与同学们交流一下.
四、作业
1.课本第33页1,3,4,5 阅读第35页几何学的起源.
2.补充作业:
一、填空题.
1.图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.(填“改变”或“不改变”)
2.经过平移,每一组对应点所连成的线段________.
3.线段AB是线段CD平移后得到的图形.点A为点C的对应点,说出点B的对应点D的位置:____________.
二、解答题.
1.下列图案可以由什么图形平移形成.
(1)
(2)
2.把鱼往左平移8cm.(假设每小格是1cm2)
答案:
一、1.改变 不改变 不改变 2.平行而且相等 3.在过B点与AC 平行的直线上且点D…在AB右侧,BD=AC
二、1. (1)整个图案的八分之一所示的图形 (2) 一对叶柄相对的叶子所成的图形
2.略.毛
5.4.2 平移(第2课时)
平移(二)
教学目标
1.经历对优美图形进行观察,分析、欣赏、制作等过程, 进一步发展空间观念、增强审美意识。毛
2.认识和欣赏平移在现实生活中的应用,能运用平移进行一定的图案设计。
重点、难点
重点:观察,分析图形的结构与形成过程, 经历制作过程认识平移在图案设计中的应用。
难点:通过平移,远离模仿进行有创意的图案设计。
课前准备
学生备好剪刀、纸、色笔、胶水、等。
教学过程
一、复习引入
右图是两个正三角形拼成的,试分析△ABC经过怎样的变化得到△DCE 点A、B、C的对应点分别是什么 对应点的连线线段有什么特性
二、欣赏优美的图案,分析图案形成过程
1.教师展示右图的图案.
2.学生观察,交流观感.学生说出这是一幅天马行空图,天马飞天图;白马与黑马除了颜色差异外形状、大小完全相同等.
3.学生思考并回答:
这个图案可以由什么图形平移形成
不考虑颜色,这个图案是由一匹飞马平移形成;若考虑颜色, 由于白马与黑马形状、大小
完全相同,白马与黑马镶嵌着,白马与白马之间、黑马与黑马之间是平移变换,而且白马与黑色若不考虑颜色也是平移变换.
教师:这个美丽的图案是一匹飞马利用平移形成的形成后再白黑相间涂上颜色,画上线条就形成了大家赞赏的图案,不仅整个图案形成过程中利用了平移,就是图中每一匹马都可以由正方形上的平移得到的.
三、设计图案活动
1.师生分析每一匹马怎样在正方形上平移得到的.
(1)学生观察课本第37页下图一匹马形成过程,在小组内交流看法.
(2)师生班上交流,统一认识.
第一步画好马头,剪下并向上平移;
第二步画好马脚、剪下并向下平移;
第三步画好部分的马翅膀,剪下并向右平移;
第四步画好前脚和马尾,剪下并分别左、右平移;
第五步画好马一只脚,剪下并向左平移.
2.学生画、剪、贴,在正方形(与课本正方形一样大)上形成一匹巨马,再剪下, 同桌有一位同学把马涂了颜色.
各小组的同学把自己制作的飞马拼成天马飞天图案.
四小组展开自己操作成果,评判那一组制作认真、图案更优美.
3.想一想,做一做;你能类似地设计一些图案吗
以小组为单位(一般4到6人),商定一个图案,分析如何利用平移形成图案的, 大家理解了基本的设计思路,再每个同学独设计出图案.
在班级交流时,选择有代表性的设计,展示设计图案说明设计的思路意图和它所表达的意义.
四、作业
1.课本P34 6.7.
2.补充作业:
一、观察下列图案由什么图形平移形成.
二、选取下图中的4个(1)或4个(2)或2个(1),2个(2)通过平移,能拼出怎样的图案 画出平移形成的各种图案.
三、你能用若干个两种颜色,形状、 大小完全相等的三角形利用平移拼成表达某种含义的图案,请画出图案,叙述它所表达的含义.
答案:
一、1.整个图案的三分之一所示的图形 2.三个窗花中一个
二、略
三、略.

课题:5.4 平移
学习目标:1、了解平移的概念,会进行点的平移。
2、理解平移的性质,能解决简单的平移问题
学习重点:平移的概念和作图方法.
学习难点:平移的作图.
学习过程:
一、学前准备
疑难: 。
二、探索与思考
(一)平移变换
预习课本P27—P29,并完成以下练习
1、观察思考:观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗
2、探索活动:
如何在一张半透明的纸上,画出一排形状和大小如图的雪人?
3、思考:在所画的相邻的两个图案中,找出三组对应点,连接它们,观察它们的位置、长短有什么关系?
4、平移定义:在平面内,将一个图形沿某个方向___一定的距离,这样的图形运动称为平移,平移改变的是图形的_____。
注意:①图形的平移是由_____和_____决定的。
②平移的方向不一定水平。
5、平移性质:①平移不改变图形的____和____。
②经过平移所得的图形与原来的图形的对应线段_______,对应角____,对应点所连的线段____。
6、对应练习:(1)如图1,△ABC平移到△DEF,图中
相等的线段有_____________,相等的角
有____________,平行的线段有____
__________。
(2)把一个△ABC沿东南方向平移3cm,则AB边上的中点P沿___方向平移了__cm。
(3)如图,△ABC是由四个形状大小相同的三角形拼成的,则可以看成是△ADF平移得到的小三角形是___________。
(4)如图,△DEF是由△ABC先向右平移__格,再向___平移___格而得到的。
(5)如图,有一条小船,若把小船平移,使点A平移到点B,请你在图中画出平移后的小船。
(二)平移作图
如图,平移三角形ABC,使点A运动到A`,画出平移后的三角形A`B`C`.
三、练一练:
(一)平移的概念
1、一个图形________________________叫做平移变换,简称平移。
2、下列各组图形中,可以经过平移变换由一个图形得到另一个图形的是(  )
3、如图,O是正六边形ABCDEF的中心,下列图形中可由△OBC平移得到的是(  )
A △OCD B △OAB 
C △OAF D △OEF
(二)平移的性质
1、平移后的图形与原图形_____、______完全相同,新图形中的每一个点,都是由___________________移动后得到的,这两个点是对应点,连接各组对应点的线段______且________或__________。对应线段______且________或__________。对应角_______。
2、如图,将梯形ABCD的腰AB沿AD平移,平移长度等于AD的长,则下列说法不正确的是(   )
A AB∥DE且AB=DE B ∠DEC=∠B
C AD∥EC且AD=EC D BC=AD+EC
3、△ABC沿BC的方向平移到△DEF的位置,(1)若∠B=260,∠F=740,则∠1=_______,
∠2=______,∠A=_______,∠D=______
(2)若AB=4cm,AC=5cm,BC=4.5cm,EC=3.5cm,则平移的距离等于________,DF=_______,CF=_________。
(三)平移作图
1、△ABC在网格中如图所示,请根据下列提示作图
(1)向上平移2个单位长度.
(2) 再向右移3个单位长度.
2、已知三角形ABC、点D,D为A的对应点。过点D作三角形ABC平移后的图形。
四、学习体会:
1、本节课你有哪些收获?你还有哪些疑惑?
2、预习时的疑难解决了吗?
五、自我检测:
(一)选择题
1、下列哪个图形是由左图平移得到的( )
2、如图所示,△FDE经过怎样的平移可得到△ABC.( )
A.沿射线EC的方向移动DB长;
B.沿射线EC的方向移动CD长
C.沿射线BD的方向移动BD长;
D.沿射线BD的方向移动DC长
3、下列四组图形中,有一组中的两个图形经过平移其中一个能得到 另一个,这组图形是( )
4、如图所示,△DEF经过平移可以得到△ABC,那么∠C
的对应角和ED的对应边分 别是( )
A.∠F,AC B.∠BOD,BA; C.∠F,BA D.∠BOD,AC
5、在平移过程中,对应线段( )
A.互相平行且相等; B.互相垂直且相等 C.互相平行(或在同一条直线上)且相等
(二)填空题
1、在平移过程中,平移后的图形与原来的图形________和_________都相同,因 此对应线段和对应角都________.
2、如图所示,平移△ABC可得到△DEF,如果∠A=50°,
∠C=60°,那么∠E=____ 度,∠EDF=_______度,
∠F=______度,∠DOB=_______度.
3、将正方形ABCD沿对角线AC方向平移,且平移后的图形的一个顶点恰好在AC的中点O处,则移动前后两个图形的重叠部分的面积是原正方形面积的____。
4、直角△ABC中,AC=3cm,BC=4cm,AB=5cm,将△ABC沿CB方向平移3cm,则边AB所经过的平面面积为____cm2。
(三)解答题
1、如图所示,请将图中的“蘑菇”向左平移6个格,再向下平移2个格.
( http: / / www.xkb1.com )
2、如图所示,将△ABC平移,可以得到△DEF,点B的对应点为点E,请画出点A的对 应点D、点C的对应点F的位置.
3、如图所示,画出平行四边形ABCD向上平移1厘米后的图形.
4、如图,将△ABC沿东北方向平移3cm。
第五章 相交线与平行线复习课(一)
知识结构图
基本知识提炼整理
主要概念
邻补角:有一条公共边,另一边互为反向延长线的两个角,叫做互为邻补角。
对顶角:一个角的两边分别为另一个角两边的反向延长线,这样的两个角叫做对顶角。
垂线:两条直线相交所成四个角中,如果有一个角是直角,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。
垂线段:过直线外一点,作已知直线的垂线,这点和垂足之间的线段。
点到直线的距离:直线外一点到这条直线的垂线段的长度。
平行线:同一平面内,不相交的两条直线叫做平行线。
命题:判断一件事情的语句叫做命题。
平移:把一个图形整体沿着某一方向平行移动,这种移动叫做平移变换,简称平移。
平移的要素:平移的方向和平移的距离。
两条平行线的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做两条平行线的距离。
主要性质
对顶角的性质:对顶角相等
邻补角的性质:互为邻补角的两个角和为
垂线的基本性质:
经过一点有且只有一条直线垂直于已知直线
垂线段最短
平行线的判定与性质
平行线的判定 平行线的性质
1、同位角相等,两直线平行2、内错角相等,两直线平行3、同旁内角互补,两直线平行4、平行于同一条直线的两条直线平行5、垂直于同一条直线的两条直线平行 1、两直线平行,同位角相等2、两直线平行,内错角相等3、两直线平行,同旁内角互补
5、平移的特征:①对应线段平行(或在同一直线上)且相等;②对应角相等;③对应点的连线平行(或在同一直线上)且相等。
基础知识填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如图,∵∠D=∠DCF(已知)
∴_____//______( )
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2题) (第5、6题) (第7题) (第9题)
7、如图,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
四、例题讲解
如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
变式训练:如图,CD⊥AB于D,FG⊥AB于G,ED∥BC,试说明.
基础过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代换 )
∴BD∥CE( )。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.
第五章相交线与平行线复习课(一)
教学目标
1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化, 梳理本章的知识结构.毛
2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.
3.使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质,能利用平移设计图案.
重点、难点
重点:复习正面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.
难点:垂直、平行的性质和判定的综合应用.
教学过程
一、复习提问
本章相交线、平行线中学习了哪些主要问题 教师根据学生的回答,逐步形成本章的知识结构图,使所学知识系统化.
二、回顾与思考
按知识网展开复习.
1.对顶角、邻补角。
(1)教师提出问题,由幻灯片出示.
①两条直线相交、构成哪两种特殊位置关系的角?指出图(1) 中具有这两种位置的角.
(1) (2) (3)
②如图(2)中,若∠AOD=90°,那么直线AB,CD的位置关系如何
③如图(3)中,∠1与∠2,∠2与∠3,∠3与∠4是怎么位置关系的角
(2)学生回答.
(3)教师强调:对顶角、邻补角是由两条相交面而成的具有特殊位置关系的角,要抓住对顶角的特征,有公共顶角,角的两边互为反向延长线;邻补角的特征:有公共顶有一条公共边,另一边互为反向延长线。
(4)对顶角有什么性质 (对顶角相等)如果两个对顶角互补或邻补角相等, 你得到什么结论
让学生明确,对顶角总是相等,邻补角一定互补, 但加上其他条件如对顶角或邻补角相等后,那么问题中每个角的度数就随之确定,为90°角, 这时两条直线互相垂直.
2.垂线及其性质.
(1)复习时教师应强调垂线的定义即可以作垂线的制定方法用,也可以作垂线性质用.
作判定用时写成:如图(2),因为∠AOD=90°,所以AB⊥CD, 这是一个角的“数”到两直线垂直的“形”的判断。
作为性质用时写成:如图(2),因为AB⊥CD,所以∠AOD=90°。这是由“形”到“数”的说理。
(2)如图(4),直线AB、CD、EF相交于点O,CD⊥EF,∠1=35°,求∠2的度数.
(4) (5) (6)
鼓励学生用不同方法求解.
(3)垂线性质1和性质2.
让学生叙述垂线的性质,懂得分清这两个命题的题设和结论,垂线性质一说得过一点已
知直线的垂线存在并且唯一的.
学生思考:
①请回忆一下后体育课测跳远成绩时,教师是怎样测量的
如图(5),AB⊥L,BC⊥L,B为重足,那么A、B、C三点在同一②条直线上吗 为什么
③点到直线的距离、两条平行线的距离.
初中阶级学习了三种距离,即是距离,就要懂得的共同点:距离都是线段的长度,又要懂得区别:两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度, 平行线间的距离是某条直线上的一点到另一点平行线的距离.
学生练习:①如图(6),四边形ABCD,AD∥BC,AB∥CD,过A作AE⊥BC,过A作AF⊥CD,垂足分别是E、F,量出点A到BC的距离和AB、CD平行线间的距离.
②请归纳一下与垂直有关的知识中,有哪些重要结论
如垂线的性质1、2,又如两种直线都垂直于第三条直线,这两条直线平行, 一条直线与平行线中一条垂直,也与另一条垂直……
3.同位角、内错角、同旁内角.
只要求学生从图形中找出同位角,内错角,同旁内角.
练习:如图(7),找出∠1、∠2、∠3中哪两个是同位角、内错角、同旁内角.
(7)
4.平行线判定与性质
(1)怎样判别两条直线是否平行.
(2)平行线有什么特征
(3)对比平行线的性质和直线平行的条件,它们有什么异同
(4)为什么研究平面内两直线的位置关系总是与角联系起来 围绕这些问题展开讨论,交流.
教师使学生进一步明确: 平行线的判定也是由“数”即角与角的关系到“形”的判断,而性质则是“形”到“数”的说理,在研究两条直线的垂直或平行时共同点是把研究它们的位置关系转化为研究角或角之间的关系。
学生练习:①填空:如图(8),当_______时,a∥c,理由是________;当______时, b∥c,理由是_________;当a∥b,b∥c时,______∥______,理由是_________.
(8) (9) (10)
②如图(9),AB∥CD,∠A=∠C,试判断AD与BC的位置关系 为什么
教师根据学生情况酌情给予引导.
5.关于平移,让学生思考:
(1)图形平移时,连接对应点有什么关系
(2)如何确定图形平移的方向和平移的距离
(3)你能用平移设计一些图案吗
练习:如图(10),平移四边形ABCD,使点B移动到点B′,画出平移后的四边形A′B′C′D′.
三、作业
1.课本P39.1~8.
2.补充作业:
一、判断题.
1.如果两个角是邻补角,那么一个角是锐角,另一个角是钝角.( )
2.平面内,一条直线不可能与两条相交直线都平行.( )
3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )
4.互为补角的两个角的平行线互相垂直.( )
5.两条直线都与同一条直线相交,这两条直线必相交.( )
6.如果乙船在甲船的北偏西35°的方向线上, 那么从甲船看乙船的方向角是南偏东规定35°.( )
二、填空题
1.a、b、c是直线,且a∥b,b⊥c,则a与c的位置关系是________.
2.如图(11),MN⊥AB,垂足为M点,MN交CD于N,过M点作MG⊥CD,垂足为G,EF 过点N点,且EF∥AB,交MG于H点,其中线段GM的长度是________到________的距离, 线段MN的长度是________到________的距离,又是_______的距离,点N到直线MG 的距离是___.
(11) (12)
3.如图(12),AD∥BC,EF∥BC,BD平分∠ABC,图中与∠ADO相等的角有_______ 个,分别是___________.
4.因为AB∥CD,EF∥AB,根据_________,所以_____________.
5.命题“等角的补角相等”的题设__________,结论是__________.
6.如图(13),给出下列论断:①AD∥BC:②AB∥CD;③∠A=∠C.
以上其中两个作为题设,另一个作为结论,用“如果……,那么……”形式,写出一个你认为正确的命题是___________.
(13) (14) (15)
7.如图(14),直线AB、CD、EF相交于同一点O,而且∠BOC=∠AOC,∠DOF=∠AOD,那么∠FOC=______度.
8.如图(15),直线a、b被C所截,a⊥L于M,b⊥L于N,∠1=66°,则∠2=________.
三、选择题.
1.下列语句错误的是( )
A.连接两点的线段的长度叫做两点间的距离
B.两条直线平行,同旁内角互补
C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角
D.平移变换中,各组对应点连成两线段平行且相等
2.如图(16),如果AB∥CD,那么图中相等的内错角是( )
A.∠1与∠5,∠2与∠6; B.∠3与∠7,∠4与∠8;
C.∠5与∠1,∠4与∠8; D.∠2与∠6,∠7与∠3
(16)
3.下列语句:①三条直线只有两个交点,则其中两条直线互相平行; ②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直; ③过一点有且只有一条直线与已知直线平行,其中( )
A.①、②是正确的命题 B.②、③是正确命题
C.①、③是正确命题 D.以上结论皆错
4.下列与垂直相交的洗法:①平面内,垂直于同一条直线的两条直线互相平行; ②一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直;③平行内, 一条直线不可能与两条相交直线都垂直,其中说法错误个数有( )
A.3个 B.2个 C.1个 D.0个
四、解答题
1.如图(17),是一条河,C河边AB外一点:
(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.
(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少 (本图比例尺为1:2000)
2.如图(18),ABA⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.
(1)判断CD与AB的位置关系;
(2)BE与DE平行吗 为什么
3.如图(19),∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.
(1)AE与FC会平行吗 说明理由.
(2)AD与BC的位置关系如何 为什么
(3)BC平分∠DBE吗 为什么.
4.在方格纸上,利用平移画出长方形ABCD的立体图,其中点D′是D的对应点.(要求在立体图中,看不到的线条用虚线表示)
答案
一、1.× 2.∨ 3.× 4,.× 5.× 6.∨
二、
1. 互相垂直
2.点M,直线CD 点M,直线EF 平行线AB、EF间 线段GN的长度
3.4个 ∠EOB、 ∠DOF、∠ABD、∠CBD
4.两条直线都与第三条直线平行,这两条直线也互相平行 CD∥EF
5.两个角是相等两角的补角 这两个角相等
6.如果一个四边形的两组对边平行,那么它的对角相等;或若一个四边形的一组对边平行,一组对角相等,那么它的另一组对边也互相平行
7.156 8.114°
三、1.C 2.D 3.A 4.D
四、1. 略
2.(1)CD∥AB
因为CD⊥MN,AB⊥MN,
所以CDN=∠ABM=90°
所以CD∥AB
(2)平行
因为∠CDN=∠ABN=90°,∠FDC=EBA
所以∠FDN=∠EBN
所以FD∥EB
3.(1)平行
因为∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义)
所以∠1=∠CDB
所以AE∥FC( 同位角相等两直线平行)
(2)平行,
因为AE∥CF,
所以∠C=∠CBE(两直线平行, 内错角相等)
又∠A=∠C 所以∠A=∠CBE
所以AF∥BC(两直线平行,内错角相等)
(3) 平分
因为DA平分∠BDF,
所以∠FDA=∠ADB
因为AE∥CF,AD∥BC
所以∠FDA=∠A=∠CBE,∠ADB=∠CBD
所以∠EBC=∠CBD
4.略
_
()
1
_
O
_
D
_
C
_
B
_
A
_
l
_
P
_
a
_
A
A B
F
C D
A
B
C
D
E
F
1
3
2
4
PAGE
- 2 -