2020-2021学年七年级数学 青岛版下册《第9章 平行线》单元综合能力提升训练(word版含答案)

文档属性

名称 2020-2021学年七年级数学 青岛版下册《第9章 平行线》单元综合能力提升训练(word版含答案)
格式 zip
文件大小 182.0KB
资源类型 教案
版本资源 青岛版
科目 数学
更新时间 2021-04-06 09:33:07

图片预览

文档简介

2020-2021年度青岛版七年级数学下册《第9章
平行线》单元综合能力提升训练(附答案)
1.如图,直线DE截AB,AC,其中内错角有(  )对.
A.1
B.2
C.3
D.4
2.某城市有四条直线型主干道分别为l1,l2,l3,l4,l3和l4相交,l1和l2相互平行且与l3、l4相交成如图所示的图形,则共可得同旁内角(  )对.
A.4
B.8
C.12
D.16
3.下列说法正确的有(  )个.
①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.
A.1
B.2
C.3
D.4
4.下面说法正确的个数为(  )
(1)在同一平面内,过直线外一点有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)两角之和为180°,这两个角一定邻补角;
(4)同一平面内不平行的两条直线一定相交.
A.1个
B.2个
C.3个
D.4个
5.如图所示,下列判断错误的是(  )
A.若∠1=∠3,AD∥BC,则BD是∠ABC的平分线
B.若AD∥BC,则∠1=∠2=∠3
C.若∠3+∠4+∠C=180°,则AD∥BC
D.若∠2=∠3,则AD∥BC
6.如图,在下列给出的条件中,不能判定AB∥DF的是(  )
A.∠A=∠3
B.∠A+∠2=180°
C.∠1=∠4
D.∠1=∠A
7.如图,BD为∠ABC的角平分线,AD∥BC,∠BDC=90°,∠A与∠C的数量关系为(  )
A.∠A+∠C=180°
B.∠A﹣∠C=90°
C.∠A=2∠C
D.∠A+∠C=90°
8.如图,直线l1∥l2,∠1=28°,则∠2+∠3=(  )
A.208°
B.180°
C.118°
D.332°
9.将一副三角板按如图放置,则下列结论:①∠1=∠3;②∠CAD+∠2=180°;③若∠1=45°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有(  )
A.①②③
B.①②④
C.③④
D.①②③④
10.如图,∠1和∠3是直线 
 和 
 被直线 
 所截而成的 
 角;图中与∠2是同旁内角的角有 
 个.
11.如图,直线l1,l2被直线l3所截,则图中同位角有 
 对.
12.平面上不重合的四条直线,可能产生交点的个数为 
 个.
13.下列说法中:
①棱柱的上、下底面的形状相同;
②若AB=BC,则点B为线段AC的中点;
③相等的两个角一定是对顶角;
④在同一平面内,不相交的两条直线叫做平行线;
⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有 
 .(只填序号)
14.下列四种说法:
①过一点有且只有一条直线与已知直线平行;
②在同一平面内,两条不相交的线段是平行线段;
③相等的角是对顶角;
④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.
其中,错误的是 
 (填序号).
15.已知:a,b,c为不重合的三条直线,a∥b,b∥c,则a∥c.理由是 
 .
16.如图,两块三角板形状、大小完全相同,边AB∥CD的依据是 
 .
17.如图,有下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠5;④∠B+∠BAD=180°.其中能得到AB∥CD的是 
 (填写编号).
18.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1= 
 .
19.∠AOB=40°,BC∥OA,过点C作直线OA的垂线,点D为垂足,若∠OCD=2∠OCB,则∠COB为 
 度.
20.两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.
(1)画出示意图,标出∠1,∠2,∠3.
(2)若∠1=2∠2,∠2=2∠3,求∠3的度数.
21.(原创题)如图所示,在∠AOB内有一点P.
(1)过P画l1∥OA;(2)过P画l2∥OB;
(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?
22.如图1,已知AC∥BD,点P是直线AC,BD间的一点,连结AB,AP,BP,过点P作直线MN∥AC.
(1)MN与BD的位置关系是什么,请说明理由;
(2)试说明∠APB=∠PBD+∠PAC;
(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.
23.根据要求完成下面的填空:
如图,直线AB,CD被EF所截,若已知∠1=∠2,说明AB∥CD的理由.
解:根据 
 得∠2=∠3
又因为∠1=∠2,
所以∠ 
 =∠ 
 ,
根据 
 得: 
 ∥ 
 .
24.填写推理理由:
如图,CD∥EF,∠1=∠2,求证:∠3=∠ACB.
证明:∵CD∥EF,
∴∠DCB=∠2 
 
∵∠1=∠2,
∴∠DCB=∠1. 
 
∴GD∥CB 
 .
∴∠3=∠ACB 
 .
25.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.
26.已知:如图,直线AB∥CD,直线EF与直线AB,CD分别交于点G,H;GM平分∠FGB,∠3=60°.求∠1的度数.
27.如图1是长方形纸带,将长方形ABCD沿EF折叠成图2,使点C、D分别落在点C1、D1处,再沿BF折叠成图3,使点C1、D1分别落在点C2、D2处.
(1)若∠DEF=20°,求图1中∠CFE的度数;
(2)在(1)的条件下,求图2中∠C1FC的度数;
(3)在图3中写出∠C2FE、∠EGF与∠DEF的数量关系,并说明理由.
参考答案
1.解:直线DE截AB,AC,形成2对内错角.
故选:B.
2.解:l1、l2被l3所截,有两对同旁内角,其它同理,故一共有同旁内角2×8=16对.
故选:D.
3.解:因为在同一平面内,两条不相交的直线是平行线,故①②错误;
③过直线外一点可以而且只可以画一条直线与已知直线平行;故此选项错误,
根据平行公理及推论,可得④正确.则正确的有1个.
故选:A.
4.解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;
只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;
如图:
∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;
同一平面内不平行的两条直线一定相交正确,
因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.
即正确的个数是2个.
故选:B.
5.解:A、∵AD∥BC,
∴∠2=∠3,
又∵∠1=∠3,
∴∠1=∠2,则BD是∠ABC的平分线;
B、∠2,∠3是直线AD和直线BC被直线BD所截形成的内错角,若AD∥BC,则∠2=∠3,∠1是直线AB和直线AD被直线BD所截形成的角,因此,若AD∥BC,不能证明∠1=∠2=∠3;
C、∠3+∠4+∠C=180°,即同旁内角∠ADC+∠C=180°,则AD∥BC;
D、内错角∠2=∠3,则AD∥BC.
故选:B.
6.解:A、因为∠A=∠3,所以AB∥DF(同位角相等,两直线平行),故本选项不符合题意.
B、因为∠A+∠2=180,所以AB∥DF(同旁内角互补,两直线平行),故本选项不符合题意.
C、因为∠1=∠4,所以AB∥DF(内错角相等,两直线平行),故本选项不符合题意.
D、因为∠1=∠A,所以AC∥DE(同位角相等,两直线平行),不能证出AB∥DF,故本选项符合题意.
故选:D.
7.解:∵BD为∠ABC的角平分线,
∴∠ABD=∠DBC,
∵AD∥BC,
∴∠A+∠ABC=180°,
∴∠A+2∠DBC=180°,
∵∠BDC=90°,
∴∠DBC+∠C=90°,
∴∠DBC=90°﹣∠C,
∴∠A+2(90°﹣∠C)=180°,
∴∠A﹣2∠C=0,
即∠A=2∠C,
故选:C.
8.解:如右图所示,延长CB交直线l1于A,
∵直线l1∥l2,∠1=28°,
∴∠3+∠4=180°,
∵∠2=∠1+∠4,
∴∠2+∠3=∠4+∠1+∠3=208°,
故选:A.
9.解:∵∠1+∠2=90°,∠3+∠2=90°,
∴∠1=∠3,
故①正确;
∵∠CAD+∠2=∠1+∠2+∠3+∠2=90°+90°=180°,
故②正确;
∵∠1=45°,
∴∠3=∠B=45°,
∴BC∥AD.
故③正确;
∵∠2=30°,
∴∠1=∠E=60°,
∴AC∥DE,
∴∠4=∠C,
故④正确.
故选:D.
10.解:∠1和∠3是直线AB和AC被直线DE所截而成的内错角;图中与∠2
是同旁内角的角有∠6、∠5、∠7,共3个,
故答案为:AB、AC、DE、内错,3.
11.解:如图所示:
∠1和∠3,∠2和∠4,∠8和∠6,∠7和∠5,都是同位角,一共有4对.
故答案为:4.
12.解:(1)当四条直线平行时,无交点;
(2)当三条平行,另一条与这三条不平行时,有三个交点;
(3)当两两直线平行时,有4个交点;
(4)当有两条直线平行,而另两条不平行时,有5个交点;
(5)当四条直线同交于一点时,只有一个交点;
(6)当四条直线两两相交,且不过同一点时,有6个交点;
(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.
故答案为:0,1,3,4,5,6.
13.解:①棱柱的上、下底面的形状相同,正确;
②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;
③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;
④在同一平面内,不相交的两条直线叫做平行线,正确;
⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.
故答案为:①④⑤.
14.解:∵过直线外一点有且只有一条直线与已知直线平行,∴①错误;
∵在同一平面内,两条不相交的线段可能在一条直线上,说两线段是平行线段不对,∴②错误;
∵相等的角不一定是对顶角,∴③错误;
∵在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交,正确,∴④正确;
故答案为:①②③.
15.解:∵a∥b,a∥c(已知),
∴b∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).
故答案为平行于同一直线的两条直线平行
16.解:由题意:∵∠ABD=∠CDB,
∴AB∥CD(内错角相等两直线平行)
故答案为:内错角相等两直线平行.
17.解:①∵∠1=∠2,
∴AD∥BC;
②∵∠3=∠4,
∴AB∥CD;
③∵∠B=∠5,
∴AB∥DC;
④∵∠B+∠BAD=180°,
∴AD∥BC,
∴能够得到AB∥CD的条件是②③,
故答案为:②③.
18.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,
∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,
∴∠PRQ=180°﹣100°=80°,
∴∠1=∠SRQ﹣∠PRQ=40°,
故答案是40°.
19.解:如图所示,当点D在AO上时,
∵BC∥OA,CD⊥AO,
∴∠BCD=90°,
又∵∠OCD=2∠OCB,
∴∠BCO=30°=∠AOC,
又∵∠AOB=40°,
∴∠COB=40°﹣30°=10°;
如图所示,当点D在AO的延长线上时,
∵BC∥OA,CD⊥AO,
∴∠BCD=90°,
又∵∠OCD=2∠OCB,
∴∠BCO=30°=∠DOC,
又∵∠AOB=40°,
∴∠COB=180°﹣40°﹣30°=110°;
故答案为:10或110.
20.解:(1)如图所示:
(2)∵∠1=2∠2,∠2=2∠3,
∴设∠3=x,则∠2=2x,∠1=4x,
∵∠1+∠3=180°,
∴x+4x=180°,
解得:x=36°,
故∠3=36°.
21.解:(1)(2)如图所示,
(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.
22.解:(1)平行;
理由如下:
∵AC∥BD,MN∥AC,
∴MN∥BD;
(2)∵AC∥BD,MN∥BD,
∴∠PBD=∠1,∠PAC=∠2,
∴∠APB=∠1+∠2=∠PBD+∠PAC.
(3)答:不成立.
它们的关系是∠APB=∠PBD﹣∠PAC.
理由是:如图2,过点P作PQ∥AC,
∵AC∥BD,
∴PQ∥AC∥BD,
∴∠PAC=∠APQ,∠PBD=∠BPQ,
∴∠APB=∠BPQ﹣∠APQ=∠PBD﹣∠PAC.
23.解:根据对顶角相等,得∠2=∠3,
又因为∠1=∠2,
所以∠1=∠3,
根据同位角相等,两直线平行,得:AB∥CD.
故答案为:对顶角相等,1,3,同位角相等,两直线平行,AB,CD
24.证明:∵CD∥EF,
∴∠DCB=∠2(两直线平行,同位角相等),
∵∠1=∠2,∴∠DCB=∠1(等量代换).
∴GD∥CB(内错角相等,两直线平行).
∴∠3=∠ACB(两直线平行,同位角相等).
故答案为两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,同位角相等.
25.解:延长MF交CD于点H,
∵∠1=90°+∠CHF,∠1=140°,∠2=50°,
∴∠CHF=140°﹣90°=50°,
∴∠CHF=∠2,
∴AB∥CD.
26.解:∵EF与CD交于点H,(已知),
∴∠3=∠4.(对顶角相等),
∵∠3=60°,(已知),
∴∠4=60°.(等量代换),
∵AB∥CD,EF与AB,CD交于点G,H,(已知),
∴∠4+∠FGB=180°.(两直线平行,同旁内角互补),
∴∠FGB=120°.
∵GM平分∠FGB,(已知),
∴∠1=60°.(角平分线的定义).
27.解:(1)∵长方形ABCD,
∴AD∥BC,
∴∠DEF+∠CFE=180°
∵∠DEF=20°,
∴∠CFE=180°﹣∠DEF=180°﹣20°=160°;
(2)∵四边形EDCF折叠得到四边形ED1C1F,
∴∠D1EF=∠DEF=20°,
∴∠DEG=∠DEF+∠D1EF=20°+20°=40°,
∵长方形ABCD,
∴AD∥BC,
∴∠CGD1=∠DEG=40°
∵FC1∥ED1,
∴∠C1FC=∠CGD1=40°;
(3)∠C2FE+∠DEF=∠EGF,
理由如下:∵长方形ABCD,
∴AD∥BC,
∴∠EFB=∠DEF,∠DEF+∠CFE=180°,∠DEG+∠EGF=180°,
设∠DEF=x°,
∴∠EFB=x°,∠CFE=180°﹣∠DEF=180°﹣x°,
∵四边形EDCF折叠得到四边形ED1C1F,
∴∠D1EF=∠DEF=x°,
∴∠DEG=∠DEF+∠D1EF=2x°,
∴∠EGF=180°﹣∠DEG=180°﹣2x°,
∵FC1∥ED1,
∴∠C1FG=∠EGF=180°﹣2x°,
∵四边形GD1C1F折叠得到四边形GD2C2F,
∴∠C2FG=∠C1FG=180°﹣2x°,∠C2FE=∠C2FG﹣∠EFB=180°﹣2x°﹣x°=180°﹣3x°,
∴∠C2FE+∠DEF=180°﹣3x°+x°=180°﹣2x°=∠EGF