2020-2021学年人教版八年级数学下册第十八章 平行四边形解答题专题练习(基础篇)(Word版,附答案)

文档属性

名称 2020-2021学年人教版八年级数学下册第十八章 平行四边形解答题专题练习(基础篇)(Word版,附答案)
格式 zip
文件大小 289.5KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-04-05 23:19:36

图片预览

文档简介

人教版数学八年级下册:第十八章
平行四边形
解答题专题练习(基础篇)
1.已知:在菱形ABCD中,点E是CD边上一点,过点E作EF⊥AC于点F,交BC边于点G,交AB延长线于点H.
(1)如图1,求证:BH=DE;
(2)如图2,当点E是CD边中点时,连接对角线BD交对角线AC于点O,连接OG、OE,在不添加任何辅助线和字母的情况下,请直接写出图2中所有的平行四边形(菱形除外).
2.如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF∥AE交AD延长线于点F.
(1)求证:四边形AECF是矩形;
(2)连接OE,若AE=12,AD=13,则线段OE的长度是 
 .
3.(1)如图1所示,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系?并对你的猜想加以证明.
(2)如图2所示,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)
4.如图,已知四边形ABCD是平行四边形,E是AB延长线上一点且BE=AB,连接CE,BD.
(1)求证:四边形BECD是平行四边形;
(2)连接DE,若AB=BD=4,DE=2,求平行四边形BECD的面积.
5.(1)如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,求证:EF=BE+FD;
(2)如图2,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足什么关系时,仍有EF=BE+FD,说明理由.
6.如图,在?ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作?ECFG.
(1)证明?ECFG是菱形;
(2)若∠ABC=120°,连接BD、CG,求∠BDG的度数;
(3)若∠ABC=90°,AB=6,AD=8,M是EF的中点,求DM的长.
7.如图1,在平面直角坐标系中,放置一个边长为5的正方形ABCD,人使得它的两个顶点B和A恰好落在x轴正半轴和y轴正半轴上,M为正方形的中心.
(1)若点B和点A在x轴和y轴上滑动,求证:在这个运动过程中,M始终在第一象限的角平分线上.
(2)若点A运动到(0,3),求此时M点的坐标.
8.(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DP∥OC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由.
(2)如果题目中的矩形变为菱形,四边形CODP的形状 
 ;
(3)如果题目中的矩形变为正方形,四边形CODP的形状 
 ;
9.如图,已知正方形ABCD,点E在BC上,点F在CD延长线上,BE=DF
(1)求证:AE=AF;
(2)若BD与EF交于点M,连接AM,试判断AM与EF的数量与位置关系,并说明理由.
10.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.
(1)证明平行四边形ECFG是菱形;
(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,
①求证:△DGC≌△BGE;
②求∠BDG的度数;
(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.
11.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).
(1)用含t的代数式表示:
AP= 
 ;DP= 
 ;BQ= 
 ;CQ= 
 .
(2)当t为何值时,四边形APQB是平行四边形?
(3)当t为何值时,四边形PDCQ是平行四边形?
12.如图,延长正方形ABCD的边BC到E,使CE=CB,连接AE交CD于F,连接BF.△BEF和△ABF是否是等腰三角形,说明理由.
13.在矩形ABCD中,AD=12cm,点P在AD边以1cm/s的速度从点A向点D运动,点Q从C点出发,以4cm/s的速度在CB间做往返运动,两点同时出发,直到点P到达点D时,P、Q都停止运动,设运动时间为t秒,当t为多少时,四边形ABQP为矩形?
14.已知:如图,矩形ABCD的对角线AC、BD相交于点O,CE∥DB,交AB的延长线于点E.求证:AC=EC.
15.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:BD=CD;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.
参考答案
1.(1)证明:∵四边形ABCD是菱形,
∴BC=CD,AB∥CD,AC平分∠BCD,
∴∠GCF=∠ECF,
∵EF⊥AC,
∴∠GFC=∠EFC=90°,
在△GFC和△EFC中,,
∴△GFC≌△EFC(ASA),
∴CG=CE,∠CGF=∠CEF,
∵AB∥CD,
∴∠H=∠CEF,
∵∠BGH=∠CGF,
∴∠H=∠BGH,
∴BH=BG,
∵BC=CD,CG=CE,
∴BC﹣CG=CD﹣CE,
即BG=DE;
(2)解:所有的平行四边形(菱形除外)为平行四边形BHED、平行四边形BHGO、平行四边形OGED、平行四边形OBGE;理由如下:
∵四边形ABCD是菱形,
∴AB∥CD,
由(1)得:CG=CE,BH=BG=DE,
∴四边形BHED为平行四边形,
∵点E是CD边中点,BC=CD,
∴CE=DE=BG=CG,
∵四边形ABCD是菱形,
∴AB∥CD,OB=OD,
∴OE、O都G是△BCD的中位线,
∴OE∥BG,OG∥CD∥AB,OG=CD=DE=BH,
∴四边形OBGE、四边形BHGO、四边形OGED都是平行四边形.
2.(1)证明:∵四边形ABCD是菱形,
∴AD∥BC,
∵CF∥AE,
∴四边形AECF是平行四边形.
∵AE⊥BC,
∴∠AEC=90°,
∴平行四边形AECF是矩形;
(2)解:∵AE=12,AD=13,
∴AB=13,
∴BE=5,
∵AB=BC=13,
∴CE=18,
∴AC===6,
∵对角线AC,BD交于点O,
∴AO=CO=3.
∴OE=3,
故答案为:3.
3.解:AE=CF.
理由如下:在平行四边形ABCD中,AB∥CD,AB=CD,
∴∠ABE=∠CDF,
在△ABE和△CDF中,

∴△ABE≌△CDF(SAS),
∴AE=CF;
(2)∵△ABD是等边三角形,
∴∠B=60°,
∵∠BAC=90°,
∴∠C=90°﹣∠B=90°﹣60°=30°,
∴BC=2AB=2×2=4,
根据勾股定理,AC===2cm,
∴△ABC的周长=AB+BC+AC=2+4+2=(6+2)cm.
4.(1)证明:∵四边形ABCD是平行四边形,
∴CD=AB,CD∥AE,
∵AB=BE,
∴CD=BE,CD∥BE,
∴四边形BECD是平行四边形;
(2)解:过D作DH⊥AE于H,
∵AB=BD=4,
∴BE=AB=4,
∴BD2﹣BH2=DE2﹣EH2=DH2,
∴42﹣BH2=(2)2﹣(4﹣BH)2,
∴BH=3,
∴DH===,
∴平行四边形BECD的面积=BE?DH=4×=4.
5.证明:(1)如图1:把△ABE绕点A逆时针旋转90°至△ADG,
则△ADG≌△ABE,
∴AG=AE,∠DAG=∠BAE,DG=BE,
又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,
∴∠GAF=∠FAE,
在△GAF和△EAF中,

∴△GAF≌△EAF(SAS).
∴GF=EF.
又∵DG=BE,
∴GF=BE+DF,
∴BE+DF=EF;
(2)当∠BAD=2∠EAF时,仍有EF=BE+FD,
理由如下:如图2,延长CB至M,使BM=DF,连接AM,
∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
∴∠D=∠ABM,
在△ABM和△ADF中,

∴△ABM≌△ADF(SAS)
∴AF=AM,∠DAF=∠BAM,
∵∠BAD=2∠EAF,
∴∠DAF+∠BAE=∠EAF,
∴∠EAB+∠BAM=∠EAM=∠EAF,
在△FAE和△MAE中,

∴△FAE≌△MAE(SAS),
∴EF=EM=BE+BM=BE+DF,
即EF=BE+DF.
6.解:(1)证明:
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四边形ECFG是平行四边形,
∴四边形ECFG为菱形;
(2)∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,AD∥BC,
∵∠ABC=120°,
∴∠BCD=60°,∠BCF=120°
由(1)知,四边形CEGF是菱形,
∴CE=GE,∠BCG=∠BCF=60°,
∴CG=GE=CE,∠DCG=120°,
∵EG∥DF,
∴∠BEG=120°=∠DCG,
∵AE是∠BAD的平分线,
∴∠DAE=∠BAE,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD,
∴△BEG≌△DCG(SAS),
∴BG=DG,∠BGE=∠DGC,
∴∠BGD=∠CGE,
∵CG=GE=CE,
∴△CEG是等边三角形,
∴∠CGE=60°,
∴∠BGD=60°,
∵BG=DG,
∴△BDG是等边三角形,
∴∠BDG=60°;
(3)如图2中,连接BM,MC,
∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M为EF中点,
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
∵,
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形.
∵AB=6,AD=8,
∴BD=10,
∴DM=BD=5.
7.(1)证明:作ME⊥y轴于E点,作MF⊥x轴于F点,如图1所示:
则四边形EMFO是矩形,
∴∠MEA=∠MFB=90°,∠EMA+∠AMF=90°,
∵四边形ABCD是正方形,
∴MA=MB,∠AMF+∠FMB=90°,
∴∠EMA=∠FMB,
在△MEA和△MFB中,,
∴△MEA≌△MFB(AAS),
∴ME=MF,
∴四边形EMFO是正方形,
∴点M都在∠AOB的平分线上,
∴M始终在第一象限的角平分线上;
(2)解:∵点A运动到(0,3),
∴OA=3,
∵AB=5,
∴OB===4,
作ME⊥y轴于E点,作MF⊥x轴于F点,作CN⊥x轴于N点,如图2所示:
则MF∥OA∥CN,四边形AONC是直角梯形,四边形EMFO是正方形,
∴∠AOB=∠CNB=90°,
∵四边形ABCD是正方形,
∴MA=MC,AB=BC,∠ABC=90°,
∴MF是直角梯形AONC的中位线,∠ABO+∠CBN=90°,
∵∠BAO+∠ABO=90°,
∴∠BAO=∠CBN,
在△BAO和△CBN中,,
∴△BAO≌△CBN(AAS),
∴CN=OB=4,
∴MF=(OA+CN)=(3+4)=,
∴M点的坐标为:(,).
8.解:(1)如图1,四边形CODP的形状是菱形,
理由是:∵四边形ABCD是矩形,
∴AC=BD,OA=OC=AC,OB=OD=BD,
∴OC=OD,
∵DP∥OC,DP=OC,
∴四边形CODP是平行四边形,
∵OC=OD,
∴平行四边形CODP是菱形;
(2)如图2,四边形CODP的形状是矩形,
理由是:∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠DOC=90°,
∵DP∥OC,DP=OC,
∴四边形CODP是平行四边形,
∵∠DOC=90°,
∴平行四边形CODP是矩形;
故答案为:矩形;
(3)四边形CODP的形状是正方形,
理由是:∵四边形ABCD是正方形,
∴AC⊥BD,AC=BD,OA=OC=AC,OB=OD=BD,
∴∠DOC=90°,OD=OC,
∵DP∥OC,DP=OC,
∴四边形CODP是平行四边形,
∵∠DOC=90°,OD=OC
∴平行四边形CODP是正方形.
故答案为:正方形.
9.(1)证明:∵四边形ABCD为正方形,
∴∠ABE=∠ADC=∠ADF=90°,AB=AD,
在△ABE和△ADF中,

∴△ABE≌△ADF(SAS),
∴AE=AF;
(2)AM⊥EF,AM=EF,理由是:
由(1)得:△ABE≌△ADF,
∴∠FAD=∠EAB,
∴∠FAE=∠DAB=90°,
∴△FAE是直角三角形,
如图,过E作EN∥CD,交BD于N,
∴∠MNE=∠MDF,∠MEN=∠MFD,
∵四边形ABCD为正方形,
∴∠NBE=45°,
∴△NBE是等腰直角三角形,
∴EN=BE=DF,
在△MNE和△MDF中,
∵,
∴△MNE≌△MDF(ASA),
∴EM=FM,
∵AE=AF,
∴AM⊥EF,AM=EF.
10.解:(1)证明:
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四边形ECFG是平行四边形,
∴四边形ECFG为菱形;
(2)①∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,AD∥BC,
∵∠ABC=120°,
∴∠BCD=60°,∠BCF=120°
由(1)知,四边形CEGF是菱形,
∴CE=GE,∠BCG=∠BCF=60°,
∴CG=GE=CE,∠DCG=120°,
∵EG∥DF,
∴∠BEG=120°=∠DCG,
∵AE是∠BAD的平分线,
∴∠DAE=∠BAE,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD,
∴△DGC≌△BGE(SAS);
②∵△DGC≌△BGE,
∴BG=DG,∠BGE=∠DGC,
∴∠BGD=∠CGE,
∵CG=GE=CE,
∴△CEG是等边三角形,
∴∠CGE=60°,
∴∠BGD=60°,
∵BG=DG,
∴△BDG是等边三角形,
∴∠BDG=60°;
(3)方法一:如图3中,连接BM,MC,
∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M为EF中点,
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
∵,
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形.
∵AB=8,AD=14,
∴BD=2,
∴DM=BD=.
方法二:过M作MH⊥DF于H,
∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形,
∴∠CEF=45°,
∴∠AEB=∠CEF=45°,
∴BE=AB=8,
∴CE=CF=14﹣8=6,
∵MH∥CE,EM=FM,
∴CH=FH=CF=3,
∴MH=CE=3,
∴DH=11,
∴DM==.
11.解:(1)t,12﹣t,15﹣2t,2t
(2)根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.
∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形.
∴t=15﹣2t,解得t=5.
∴t=5s时四边形APQB是平行四边形;
(3)由AP=tcm,CQ=2tcm,
∵AD=12cm,BC=15cm,
∴PD=AD﹣AP=12﹣t,
如图1,∵AD∥BC,∴当PD=QC时,四边形PDCQ是平行四边形.
即:12﹣t=2t,
解得t=4s,
∴当t=4s时,四边形PDCQ是平行四边形.
12.解:△BEF和△ABF是等腰三角形,
理由:
∵四边形ABCD是正方形,
∴AB∥CD,
∵CE=CB,DC⊥BE,
∴BF=EF,
∴△BEF是等腰三角形,
∵FC∥AB,
∴=
又∵BC=EC,
∴EF=AF,
∴△ABF是等腰三角形.
13.解:∵在矩形ABCD中,AD=12cm,
∴AD=BC=12cm.
当四边形ABQP为矩形时,AP=BQ.
①当0<t<3时,t=12﹣4t,
解得,t=;
②当3≤t<6时,t=4t﹣12,
解得
t=4;
③当6≤t<9时,t=36﹣4t,
解得
t=;
④当9≤t≤12时,t=4t﹣36,
解得,t=12.
综上所述,当t为或4或或12时,四边形ABQP为矩形.
14.证明:∵四边形ABCD是矩形,
∴AC=DB,AB∥DC,
∴DC∥BE,
又∵CE∥DB,
∴四边形CDBE是平行四边形,
∴DB=CE,
∴AC=CE.
15.证明:
(1)∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中点,
∴AE=DE,

∴△AEF≌△DEC(AAS),
∴AF=DC,
∵AF=BD,
∴BD=CD;
(2)四边形AFBD是矩形.
理由:
∵AB=AC,D是BC的中点,
∴AD⊥BC,
∴∠ADB=90°
∵AF=BD,
∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,
∴四边形AFBD是平行四边形,
又∵∠ADB=90°,
∴四边形AFBD是矩形.