2020-2021学年八年级数学苏科版下册 9.4矩形、菱形、正方形 同步练习(Word版 含答案)

文档属性

名称 2020-2021学年八年级数学苏科版下册 9.4矩形、菱形、正方形 同步练习(Word版 含答案)
格式 zip
文件大小 268.5KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2021-04-09 09:40:48

图片预览

文档简介

9.4矩形、菱形、正方形
同步练习
一.选择题
1.下列说法中正确的是(  )
A.有一组对边平行的四边形是平行四边形
B.对角线互相垂直的四边形是菱形
C.对角线互相垂直平分的四边形是正方形
D.有一组邻边相等的平行四边形是菱形
2.平行四边形ABCD的对角线AC和BD交于点O,添加一个条件不能使平行四边形ABCD变为矩形的是(  )
A.OD=OC
B.∠DAB=90°
C.∠ODA=∠OAD
D.AC⊥BD
3.如图,在菱形ABCD中,∠ABC=80°,E是线段BD上一动点(点E不与点B,D重合),当△ABE是等腰三角形时,∠DAE=(  )
A.30°
B.70°
C.30°或60°
D.40°或70°
4.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当∠BAD=100°时,则∠CDF=(  )
A.15°
B.30°
C.40°
D.50°
5.如图,正方形ABCD中,点E是对角线AC上的一点,且AE=AB,连接BE,DE,则∠CDE的度数为(  )
A.20°
B.22.5°
C.25°
D.30°
6.如图,矩形OABC的边OA在x轴上,OC在y轴上,点B(10,6),把矩形OABC绕点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为(  )
A.
B.
C.
D.
7.某小区有一块边长为a的正方形场地,规划修建两条宽为b的绿化带.方案一如图甲所示,绿化带面积为S甲;方案二如图乙所示,绿化带面积为S乙.设k=(a>b>0),下列选项中正确的是(  )
A.
B.
C.
D.
8.如图,矩形ABCD中,点E在BC上,且AE平分∠BAC,AE=CE,BE=2,则矩形ABCD的面积为(  )
A.24
B.24
C.12
D.12
9.如图,四边形ABCD为菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是(  )
A.20°
B.25°
C.30°
D.35°
10.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点M是边AB上一点(不与点A,B重合),作ME⊥AC于点E,MF⊥BC于点F,若点P是EF的中点,则CP的最小值是(  )
A.1.2
B.1.5
C.2.4
D.2.5
二.填空题
11.在矩形ABCD中,AB=3,∠ABC的平分线BE交AD所在的直线于点E,若DE=2,则AD的长为 
 .
12.如图,在菱形ABCD中,∠B=60°,E,H分别为AB,BC的中点,G,F分别为线段HD,CE的中点.若线段FG的长为2?,则AB的长为 
 .
13.如图,已知菱形OABC的顶点O(0,0),B(2,2),每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为 
 .
14.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC=12,BD=16,则OE的长为 
 .
15.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN=45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC=90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是 
 .
三.解答题
16.如图,已知?ABCD的对角线AC、BD交于点O,且∠1=∠2.
(1)求证:?ABCD是菱形.
(2)F为AD上一点,连接BF交AC于E,且AE=AF,若AF=3,AB=5,求AO的长.
17.如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D不重合),BE⊥EF,且∠ABE+∠CEF=45°.求证:四边形ABCD是正方形.
18.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)求证:矩形DEFG是正方形;
(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
参考答案
一.选择题
1.解:A、有两组对边分别平行的四边形是平行四边形,故A选项不符合题意;
B、对角线互相垂直的平行四边形是菱形,故B选项不符合题意;
C、对角线互相垂直平分且相等的四边形是正方形,故C选项不符合题意;
D、有一组邻边相等的平行四边形是菱形,故D选项符合题意;
故选:D.
2.解:∵四边形ABCD是平行四边形,
∴OA=OC=AC,OB=OD=BD,
A、OD=OC时,AC=BD,
∴平行四边形ABCD是矩形,故选项A不符合题意;
B、四边形ABCD是平行四边形,∠DAB=90°,
∴平行四边形ABCD是矩形,故选项B不符合题意;
C、∵∠ODA=∠OAD,
∴OA=OD,
∴AC=BD,
∴平行四边形ABCD是矩形,故选项C不符合题意;
D、四边形ABCD是平行四边形,AC⊥BD,
∴平行四边形ABCD是菱形,故选项D符合题意;
故选:D.
3.解:∵在菱形ABCD中,∠ABC=80°,
∴∠ABD=ABC=40°,AD∥BC,
∴∠BAD=180°﹣∠ABC=100°,
∵△ABE是等腰三角形,
∴AE=BE,或AB=BE,
当AE=BE时,
∴∠ABE=∠BAE=40°,
∴∠DAE=100°﹣40°=60°;
当AB=BE时,∴∠BAE=∠AEB=(180°﹣40°)=70°,
∴∠DAE=100°﹣70°=30°,
综上所述,当△ABE是等腰三角形时,∠DAE=30°或60°,
故选:C.
4.解:如图,连接BF,
∵四边形ABCD是菱形,
∴CD=BC,∠DCF=∠BCF,
在△BCF和△DCF中,
∵,
∴△BCF≌△DCF(SAS)
∴∠CBF=∠CDF
∵FE垂直平分AB,∠BAF=×100°=50°
∴∠ABF=∠BAF=50°
∵∠ABC=180°﹣100°=80°,∠CBF=80°﹣50°=30°
∴∠CDF=30°.
故选:B.
5.解:∵四边形ABCD是正方形,
∴AB=AD,∠ADC=90°,∠DAC=45°,
∵AE=AB,
∴AD=AE,
∴∠ADE=∠AED=67.5°,
∴∠CDE=90°﹣67.5°=22.5°,
故选:B.
6.解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,
由题意可得:∠C1NO=∠A1MO=90°,
∠1=∠2=∠3,
则△A1OM∽△OC1N,
∵点B(10,6),
∴OA=10,OC=6,
∴OA1=10,A1M=6,
∴OM=8,
∴设NO=3x,NC1=4x,则OC1=5x
∵OC1=6,
则5x=6,x=
则NO=3x=,NC1=4x=,
故点C的对应点C1的坐标为:(﹣,).
故选:A.
7.解:∵S甲=2ab﹣b2,S乙=2ab.
∴k===1﹣
∵a>b>0
∴<k<1
故选:B.
8.解:∵四边形ABCD是矩形,
∴∠B=90°,
∴∠BAC+∠BCA=90°,
∵AE平分∠BAC,AE=CE,
∴∠BAE=∠EAC=∠ECA,
∴∠BAE+∠EAC+∠ECA=90°,
∴∠BAE=∠EAC=∠ECA=30°,
∴AE=CE=2BE=4,AB=2,
∴BC=BE+CE=6,
∴矩形ABCD面积=AB×BC=2×6=12;
故选:C.
9.解:如图:
∵四边形ABCD是菱形,
∴OD=OB,AB∥CD,BD⊥AC
∵DH⊥AB,
∴DH⊥CD,∠DHB=90°,
∴OH为Rt△DHB的斜边DB上的中线,
∴OH=OD=OB,
∴∠HDO=∠DHO,
∵DH⊥CD,
∴∠GDO+∠ODC=90°,
∵BD⊥AC,
∴∠ODC+∠DCO=90°,
∴∠HDO=∠DCO,
∴∠DHO=∠DCA,
∵四边形ABCD是菱形,
∴DA=DC,
∴∠CAD=∠DCA=25°,
∴∠DHO=25°,
故选:B.
10.解:连接CM,如图所示:
∵∠ACB=90°,AC=3,BC=4,
∴AB===5,
∵ME⊥AC,MF⊥BC,∠ACB=90°,
∴四边形CEMF是矩形,
∴EF=CM,
∵点P是EF的中点,
∴CP=EF,
当CM⊥AB时,CM最短,
此时EF也最小,则CP最小,
∵△ABC的面积=AB×CM=AC×BC,
∴CM===2.4,
∴CP=EF=CM=1.2,
故选:A.
二.填空题
11.解:如图1,当点E在AD上时,
∵四边形ABCD是矩形,
∴∠A=90°,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AE=AB=3,
∵DE=2,
∴AD=AE+DE=3+2=5;
如图2,当点E在AD的延长线上时,同理AE=3,
∴AD=AE﹣DE=3﹣2=1.
故答案为:5或1.
12.解:如图,连接CG并延长,交AD于点M,连接EM,
∵四边形ABCD为菱形,∠B=60°,
∴AD∥BC,
∴∠A=120°,∠MGD=∠CGH,
∵点G为HD的中点,
∴HG=DG,
∵∠MGD=∠CGH,
∴△MGD≌△CGH(ASA),
∴MG=CG,MD=CH=BC=AD,
∴点G为MC的中点,点M为AD的中点,
∵F,G分别为CE和CM的中点,
∴FG是△CEM的中位线,
∴FG=EM,
∴EM=2FG=4,
∵E,M分别为AB和AD的中点,
∴AE=AM,
∵∠A=120°,
∴EM=AE=4,
∴AE=4,
∴AB=2AE=8.
故答案为:8.
13.解:∵菱形OABC的顶点O(0,0),B(2,2),
∴D点坐标为(1,1).
∵每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,
∴OD旋转了7周半,菱形的对角线交点D的坐标为(﹣1,﹣1),
故答案为:(﹣1,﹣1).
14.解:∵DE∥AC,CE∥BD,
∴四边形OCED为平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=OC=AC=6,OB=OD=BD=8,
∴∠DOC=90°,CD===10,
∴平行四边形OCED为矩形,
∴OE=CD=10,
故答案为:10.
15.解:①:∵正方形ABCD中,AB=AD,∠B=∠ADC=∠C=90°
∴MN2=MC2+NC2
当MN=MC时,
MN2=2MC2,
∴MC2=NC2,
∴MC=NC,
∴BM=DN,
∴△ABM≌△ADN(SAS)
∴∠BAM=∠DAN,
∵∠MAN=45°,
∴∠BAM=22.5°,故①正确;
②:如图,将△ABM绕点A顺时针旋转90°得△ADE,
则∠EAN=∠EAM﹣∠MAN=90°﹣45°=45°,
则在△EAN和△MAN中,

∴△EAN≌△MAN(SAS)
∴∠AMN=∠AED,
∴∠AED+∠EAM+∠ENM+∠AMN=360°,
∴2∠AMN+90°+(180°﹣∠MNC)=360°,
∴2∠AMN﹣∠MNC=90°,
故②正确;
③:∵△EAN≌△MAN,
∴MN=EN=DE+DN=BM+DN,
∴△MNC的周长为:
MC+NC+MN=(MC+BM)+(NC+DN)=DC+BC,
∵DC和BC均为正方形ABCD的边长,故△MNC的周长不变.故③正确;
④如图,将△ADN绕点A逆时针旋转90°得△ABF,
∴∠MAF=90°﹣∠MAN=45°,
∴∠MAN=∠MAF,
在△MAN和△MAF中,

∴△MAN≌△MAF(SAS),
∴∠AMN=∠AMB,
故④错误.
综上①②③正确.
故答案为:①②③.
三.解答题
16.(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠2=∠ACB,
∵∠1=∠2,
∴∠1=∠ACB,
∴AB=CB,
∴?ABCD是菱形.
(2)解:由(1)得:?ABCD是菱形,
∴BC=AB=5,AO=CO,
∵AD∥BC,
∴∠AFE=∠CBE,
∵AE=AF=3,
∴∠AFE=∠AEF,
又∵∠AEF=∠CEB,
∴∠CBE=∠CEB,
∴CE=BC=5,
∴AC=AE+CE=3+5=8,
∴AO=AC=4.
17.证明:如图,作EM⊥BC于点M,
∵四边形ABCD是矩形,
∴AB⊥BC,
∴EM∥AB,
∴∠ABE=∠BEM,∠BAC=∠CEM,
∵∠ABE+∠CEF=45°,
∴∠BEM+∠CEF=45°,
∵BE⊥EF,
∴∠CEM=45°=∠BAC,
∴∠BAC=∠ACB=45°,
∴AB=BC,
∴矩形ABCD是正方形.
18.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,
∵正方形ABCD,
∴∠BCD=90°,∠ECN=45°,
∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,
∴四边形EMCN为正方形,
∵四边形DEFG是矩形,
∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,
∴∠DEN=∠MEF,
又∠DNE=∠FME=90°,
在△DEN和△FEM中,,
∴△DEN≌△FEM(ASA),
∴ED=EF,
∴矩形DEFG为正方形,
(2)CE+CG的值为定值,理由如下:
∵矩形DEFG为正方形,
∴DE=DG,∠EDC+∠CDG=90°,
∵四边形ABCD是正方形,
∵AD=DC,∠ADE+∠EDC=90°,
∴∠ADE=∠CDG,
在△ADE和△CDG中,,
∴△ADE≌△CDG(SAS),
∴AE=CG,
∴AC=AE+CE=AB=×4=8,
∴CE+CG=8是定值.