9.4矩形、菱形、正方形
同步测试
一.选择题
1.下列说法正确的是 )
A.有一个角是直角的平行四边形是正方形
B.对角线互相垂直的矩形是正方形
C.有一组邻边相等的菱形是正方形
D.各边都相等的四边形是正方形
2.已知四边形ABCD是平行四边形,下列说法正确的有( )
①当AB=BC时,它是矩形
②AC⊥BD时,它是菱形
③当∠ABC=90°时,它是菱形
④当AC=BD时,它是正方形
A.①②
B.②
C.②④
D.③④
3.如图,矩形ABCD的对角线AC,BD相交于点O,且∠AOD=120°.过点A作AE⊥BD于点E,则BE:ED等于( )
A.1:3
B.1:4
C.2:3
D.2:5
4.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当∠BAD=100°时,则∠CDF=( )
A.15°
B.30°
C.40°
D.50°
5.如图,四边形ABCD为菱形,A、B两点的坐标分别是,B(0,1),点C、D在坐标轴上,则菱形ABCD的周长等于( )
A.2
B.4
C.8
D.16
6.如图,在四边形ABCD中,分别过点A,点C作对角线BD的平行线,再分别过点B,点D作对角线AC的平行线,这四条直线依次相交于点F,G,H,E,若四边形FGHE为菱形,则四边形ABCD具有的性质是( )
A.AB=CD
B.∠BAD=∠ACD
C.AC⊥BD
D.AC=BD
7.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于( )
A.0.5
cm
B.1
cm
C.1.5
cm
D.2
cm
8.如图,矩形ABCD中,点E在BC上,且AE平分∠BAC,AE=CE,BE=2,则矩形ABCD的面积为( )
A.24
B.24
C.12
D.12
9.如图,在菱形ABCD中,对角线AC,BD交于点E,延长BC到点F,使CF=BC,连接AF,DF,AF分别交CD,BD于点G,O,则下列结论错误的是( )
A.四边形ACFD是平行四边形
B.BD2+FD2=BF2
C.OE=BD
D.面积关系:S△GEO=S△ADO
10.如图,在正方形有ABCD中,E是AB上的动点(不与A、B重合),连接DE,点A关于DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH,那么的值为( )
A.1
B.
C.
D.2
二.填空题
11.一个正方形的对角线长为2,则其面积为
.
12.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE,设AC=12,BD=16,则OE的长为
.
13.如图,在菱形ABCD中,对角线AC,BD相交于点O,H为BC中点,AC=6,BD=8,则线段OH的长为
.
14.如图,AC是菱形ABCD的对角线,P是AC上的一个动点,过点P分别作AB和BC的垂线,垂足分别是点F和E,若菱形的周长是12cm,面积是6cm2,则PE+PF的值是
cm.
15.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN=45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC=90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是
.
三.解答题
16.如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D不重合),BE⊥EF,且∠ABE+∠CEF=45°.求证:四边形ABCD是正方形.
17.如图,已知?ABCD的对角线AC、BD交于点O,且∠1=∠2.
(1)求证:?ABCD是菱形.
(2)F为AD上一点,连接BF交AC于E,且AE=AF,若AF=3,AB=5,求AO的长.
18.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使得CF=BE,连接DF,
(1)求证:四边形AEFD是矩形;
(2)连接OE,若AB=13,OE=,求AE的长.
参考答案
1.B
2.B
3.A
4.B
5.C
6.D
7.B
8.C
9.C
10.B
11.2
12.10
13.2.5
14.2
15.①②③
16.证明:如图,作EM⊥BC于点M,
∵四边形ABCD是矩形,
∴AB⊥BC,
∴EM∥AB,
∴∠ABE=∠BEM,∠BAC=∠CEM,
∵∠ABE+∠CEF=45°,
∴∠BEM+∠CEF=45°,
∵BE⊥EF,
∴∠CEM=45°=∠BAC,
∴∠BAC=∠ACB=45°,
∴AB=BC,
∴矩形ABCD是正方形.
17.(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠2=∠ACB,
∵∠1=∠2,
∴∠1=∠ACB,
∴AB=CB,
∴?ABCD是菱形.
(2)解:由(1)得:?ABCD是菱形,
∴BC=AB=5,AO=CO,
∵AD∥BC,
∴∠AFE=∠CBE,
∵AE=AF=3,
∴∠AFE=∠AEF,
又∵∠AEF=∠CEB,
∴∠CBE=∠CEB,
∴CE=BC=5,
∴AC=AE+CE=3+5=8,
∴AO=AC=4.
18.(1)证明:∵四边形ABCD是菱形,
∴AD∥BC且AD=BC,
∵BE=CF,
∴BC=EF,
∴AD=EF,
∵AD∥EF,
∴四边形AEFD是平行四边形,
∵AE⊥BC,
∴∠AEF=90°,
∴四边形AEFD是矩形;
(2)解:∵四边形ABCD是菱形,AB=13,
∴BC=AB=13,AC⊥BD,OA=OC=AC,OB=OD=BD,
∵AE⊥BC,
∴∠AEC=90°,
∴OE=AC=OA=2,AC=2OE=4,
∴OB===3,
∴BD=2OB=6,
∵菱形ABCD的面积=BD×AC=BC×AE,
即×6×4=13×AE,
解得:AE=12.