平面直角坐标系
(第2课时)
教学目标:
知识技能:
1.能建立适当的直角坐标系,描述物体的位置;
2.在给定的直角坐标系中,会根据坐标描出点的位置.
数学思考:经历画坐标系、描点、连线,等过程,发展学生的数形结合的意识, 合作交流的意识.
解决问题:通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系,体会平面直角坐标系在实际中的应用。
教学重点: 会根据实际情况建立适当的坐标系,用平面直角坐标系表示具体的地理位置;
教学难点:根据已知条件,建立适当的坐标系.
教学过程:
复习引入
问题:
1.为什么叫做直角坐标系,画出直角坐标系.
2.写出图中点A、B、C、D、E的位置.
3、写出图中的多边形ABCDEF各个顶点的坐标.
新授探究
(1)例:在平面直角坐标系中描出下列各点:
A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,4).
分析:先在x轴上找出表示4的点,再在y轴上找出表示5的点, 过这两个点分别作x轴和y轴的垂线,垂线的交点就是A.
师生共同活动作出点A、B、C、D、E由学生独立完成.
(2)探究:
如图,正方形ABCD的边长为6.
(1)如果以点A为原点,AB所在的直线为x轴,建立平面坐标系,那么y 轴是哪条线
(2)写出正方形的顶点A、B、C、D的坐标.
(3)请另建立一个平面直角坐标系,此时正方形的顶点A、B、C、D的坐标又分别是多少 与同学交流一下.
学生讨论、交流后,得到以下共识:
①y轴是AD所在直线.
②A(0,0),B(0,6),C(6,6),D(6,0).
③让部分学生描述,并投影作法,同学讨论.
④建立的平面直角坐标系不同,则各点的坐标也不同.
巩固练习
填空题.
1.若点P(x,y)满足xy=0,则点P在___________.
2.在平面直角坐标系中,顺次连结A(-3,4),B(-6,-2),C(6,-2),D(3,4)四点, 所组成的图形是________.
3.若线段AB的中点为C,如果用(1,2)表示A,用(4,3) 表示B, 那么C 点的坐标是嗯________.
4.若线段AB平行x轴,AB长为5,若A的坐标为(4,5),则B的坐标为________.
解答题
如下图,已知A(0,4),B(-3,0),C(3,0).
要画平行四边形ABCD,根据A、B、C三点的坐标,试写出第四个顶点D的坐标.
你的答案惟一吗?
课内总结
本节课你有哪些收获?你还有哪些疑惑?
课后作业
解答题.
1.在图直角坐标系中描出下列各组点,并将各组点用线段依次连结起来,观察所得到的图形,你觉得它像什么
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(-9,3),(-9,0),(-3,0),(-3,3);
(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);
(4)(3,7),(1,5)(2,5),(5,5),(6,5),(4,7);
(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).
2.如图长方形ABCD的长和宽分别是6和4.以C为坐标原点,分别以CD、CB所在的直线为x轴、y轴建立直角坐标,则长方形各顶点坐标分别是多少
3、在一次“寻宝”游戏中,寻宝人员已经找到了坐标为(3,2)和(3,-2)的两个标志点,并且知道藏宝地点的坐标为(4,4),除此外不知道其他信息.如何确定直角坐标系找到“宝藏”?
4、在直角坐标系中描出下列各点,并将各组内的点用线段顺次连结起来.
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0).
观察所得的图形,你觉得它像什么?