[巩固层·知识整合]
[提升层·题型探究]
用频率估计概率
【例1】 为了为奥运会做准备,某射击运动员在相同条件下进行射击训练,结果如下表:
射击次数n 10 20 50 100 200 500
击中靶心次数m 8 19 44 92 178 455
击中靶心的频率 0.8 0.95 0.88 0.92 0.89 0.91
(1)该射击运动员射击一次,击中靶心的概率大约是多少?
(2)假设该射击运动员射击了300次,则击中靶心的次数大约是多少?
(3)假设该射击运动员射击了10次,前9次中有8次击中靶心,那么第10次一定击中靶心吗?
[解] (1)由表可知,击中靶心的频率在0.9附近,故击中靶心的概率大约是0.9.
(2)击中靶心的次数大约是300×0.9=270(次).
(3)由概率的意义,可知概率是个常数,不因试验次数的变化而变化.最后一次击中靶心的概率仍是0.9,所以不一定击中靶心.
概率是一个常数,但除了特殊几类概型,概率并不易知,故可以用频率来估计.
1.对一批U盘进行抽检,结果如下表:
抽出件数a 50 100 200 300 400 500
次品件数b 3 4 5 5 8 9
次品频率
(1)计算表中次品的频率;
(2)从这批U盘中任意抽取一个是次品的概率约是多少?
(3)为保证买到次品的顾客能够及时更换,要销售2 000个U盘,至少需进货多少个U盘?
[解] (1)表中次品频率从左到右依次为0.06,0.04,0.025,0.017,0.02,0.018.
(2)当抽取件数a越来越大时,出现次品的频率在0.02附近摆动,所以从这批U盘中任意抽取一个是次品的概率约是0.02.
(3)设需要进货x个U盘,为保证其中有2 000个正品U盘,则x(1-0.02)≥2 000,因为x是正整数,所以x≥2 041,即至少需进货2 041个U盘.
互斥事件与对立事件的概率
【例2】 某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1 000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)抽取1张奖券中奖的概率;
(3)抽取1张奖券不中特等奖或一等奖的概率.
[解] 由题意事件A、B、C为互斥事件.
(1)∵每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个,
∴P(A)=,P(B)==,P(C)==.
(2)设“抽取1张奖券中奖”为事件D,则
P(D)=P(A)+P(B)+P(C)=++
=.
(3)设“抽取1张奖券不中特等奖或一等奖”为事件E,则
P(E)=1-P(A)-P(B)=1--=.]
求复杂事件的概率通常有两种方法
一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,若A与B互为对立事件,则利用公式P(A)=1-P(B)求解.
2.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.
(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;
(2)求该地1位车主甲、乙两种保险都不购买的概率.
[解] 记A表示事件:该车主购买甲种保险;B表示事件:该车主购买乙种保险但不购买甲种保险;C表示事件:该车主至少购买甲、乙两种保险中的1种;D表示事件:该车主甲、乙两种保险都不购买.
(1)由题意得P(A)=0.5,P(B)=0.3,又C=A∪B,
所以P(C)=P(A∪B)=P(A)+P(B)=0.5+0.3=0.8.
(2)因为D与C是对立事件,所以P(D)=1-P(C)=1-0.8=0.2.
古典概型
【例3】 从含有两件正品a1,a2和一件次品b的三件产品中每次任取一件,每次取出后不放回,连续取两次.
(1)求取出的两件产品中恰有一件次品的概率;
(2)如果将“每次取出后不放回”这一条件换成“每次取出后放回”,则取出的两件产品中恰有一件次品的概率是多少?
[解] (1)每次取一件,取出后不放回,则连续取两次的所有基本事件共有6个,分别是(a1,a2),(a1,b),(a2,a1),(a2,b),(b,a1),(b,a2),其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.可以确定这些基本事件的出现是等可能的.用A表示“取出的两件产品中恰有一件次品”,则A包含的基本事件是(a1,b),(a2,b),(b,a1),(b,a2).因为A中的基本事件的个数为4,所以P(A)==.
(2)有放回地连续取出两件,则所有的基本事件共有9个,分别是(a1,a1),(a1,a2),(a1,b),(a2,a1),(a2,a2),(a2,b),(b,a1),(b,a2),(b,b).由于每一件产品被取到的机会均等,因此可以确定这些基本事件的出现是等可能的.用B表示“取出的两件产品中恰有一件次品”,则B包含的基本事件是(a1,b),(a2,b),(b,a1),(b,a2).
因为B中的基本事件的个数为4,所以P(B)=.
古典概型求解需注意的问题
解题时要紧紧抓住古典概型的两个基本特点,即有限性和等可能性.另外,在求古典概型问题的概率时,往往需要我们将所有基本事件一一列举出来,以便确定基本事件总数及事件所包含的基本事件数.这就是我们常说的穷举法.在列举时应注意按一定的规律、标准,不重不漏.
3.甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上.甲先抽,乙后抽,各抽一张,抽到的牌不放回.
(1)设(i,j)表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况;
(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?
(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;反之,则乙胜.你认为此游戏是否公平,说明你的理由.
[解] (1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,红桃2、红桃3、红桃4分别用2,3,4表示)为:(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种情况.
(2)甲抽到3,乙抽到的牌只能是2或4或4′,因此乙抽到的牌的牌面数字大于3的概率为.
(3)甲抽到的牌的牌面数字比乙抽到的牌的牌面数字大的情况有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,所以甲胜的概率为p1=,乙胜的概率为p2=1-p1=.因为<,所以此游戏不公平.
几何概型
【例4】 在半径为1的圆上随机地取两点,连成一条弦,则弦长超过圆内接等边三角形的边长的概率是多少?
思路点拨:密切注意题目条件,搞清几何概型的“测度”类型.
[解] 在圆上随机地取两点,可以看成先取定一点后,再随机地取另一点,如图所示,△BCD为单位圆O的内接等边三角形,在圆O上可取定点B,当另一点E取在劣弧CD上时,BE>BC.
记事件A={弦长超过圆内接等边三角形的边长},劣弧CD的弧长是圆周长的,所以由几何概型的概率计算公式得P(A)=.
1.过半径为1的圆内一条直径上的任意一点作垂直于该直径的弦,求弦长超过圆内接等边三角形的边长的概率.
[解] 记事件A={弦长超过圆内接等边三角形的边长},如图所示,不妨在过圆内接等边三角形BCD的顶点B的直径BE上任取一点作垂直于直径的弦,显然当弦为CD时等于边长,弦长大于CD的条件是圆心O到弦的距离小于OF,由几何概型的概率公式得P(A)==,即弦长超过圆内接等边三角形的边长的概率是.
2.以半径为1的圆内任一点为中点作弦,求弦长超过圆内接等边三角形的边长的概率.
[解] 记事件A={弦长超过圆内接等边三角形的边长},如图所示,作圆内接等边三角形BCD的内切圆,当以内切圆(小圆)上任一点为中点作弦时,弦长等于圆(大圆)内接等边三角形BCD的边长,所以弦长超过圆(大圆)内接等边三角形的边长时,弦的中点在小圆内,易得小圆半径为,所以由几何概型的概率公式得P(A)=,π×12)=,即弦长超过圆内接等边三角形的边长的概率是.
几何概型问题的解题方法
(1)由于基本事件的个数和结果的无限性,其概率就不能应用P(A)=求解,因此需转化为几何度量(如长度、面积、体积等)的比值求解.
(2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.