1.1探索勾股定理(三)
一、教学目标:
知识与技能目标:
1.通过对几种常见的勾股定理验证方法的分析和欣赏,理解数学知识之间的内在联系;
2.经历综合运用已有知识解决问题的过程,加深对勾股定理、整式运算、面积等的认识。
过程与方法目标:
1.经历不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值;
2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间的内在联系。
3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题的方法与经验。
情感与态度目标:
通过丰富有趣的拼图活动增强对数学学习的兴趣;通过探究总结活动,让学生获得成功的体 验和克服困难的经历,增进数学学习的信心;在合作学习活动中发展学生的合作交流的意识和能力。
教学重点:
1.通过综合运用已有知识解决问题的过程,加深对勾股定理、整式运算、面积等的认识。
2.通过拼图验证勾股定理的过程,使学习获得一些研究问题与合作交流的方法与经验。
教学难点:
1.利用“五巧板”拼出不同图形进行验证勾股定理。
2.利用数形结合的方法验证勾股定理。
教学准备:
剪刀、双面胶、硬纸板、直尺(或三角板)、铅笔、多媒体课件。
二、教学过程
第一环节 验证方法的收集与整理
<一>课前自主探究活动
具体的做法是:请各个学习小组从网络或书籍上,尽可能多地寻找和了解验证勾股定理的方法,
<二>探究成果的交流与展示
以下是学生搜集的勾股定理的证明方法:
1.赵爽证明
2.1876年美国总统Garfield证明
3.意大利著名画家达·芬奇的证法
4.毕达哥拉斯
5.青朱出入图
6.在印度、在阿拉伯世界和欧洲出现的一种拼图证明
7.欧几里得证明
第二环节 验证过程的分析与欣赏
内容:教师引导学生对收集的验证方法进行归类整理:分三种类型:
第三环节 尝试拼图,验证定理
内容:五巧板的制作(动手操作,合作探究)
1.利用五巧板拼“青朱出入图”。
2.取两幅五巧板,将其中的一幅拼成一个以C为边长的正方形,将另外一幅五巧板拼成两个边长分别为a、b的正方形,你能拼出来吗?
3.用上面的两幅五巧板,还可拼出其它图形,你能验证勾股定理吗?
4.利用五巧板还能通过怎样拼图来验证勾股定理?
第四环节 练习提升
1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2
2.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。
第五环节 勾股定理的文化价值
(1) 勾股定理是联系数学中数与形的第一定理。
(2) 勾股定理反映了自然界基本规律,有文明的宇宙“人”都应该认识它,因而勾股定理图被建 议作为与“外星人”联系的信号。
(3)勾股定理导致不可通约量的发现,引发第一次数学危机。
(4)勾股定理公式是第一个不定方程,为不定方程的解题程序树立了一个范式。
第六环节 小结反思
第七环节 课题拓展
(1)写数学日记并发挥你的聪明才智,去探索勾股定理、去研究勾股定理,你又有什么新的发 现?
(2)习题:1.3
(3)尝试利用意大利著名画家达·芬奇的方法验证勾股定理?
第一种类型:以赵爽的“弦图”为代表,用几何图形的截、割、拼、补,来证明代数式之间的恒等关系。
第二种类型:以欧几里得的证明方法为代表,运用欧氏几何的基本定理进行证明
第三种类型:以刘徽的“青朱出入图”为代表,“无字证明”
_
b
_
a
_
a
_
c
_
b
_
c