2.6实数(一)

文档属性

名称 2.6实数(一)
格式 zip
文件大小 24.2KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2012-02-23 16:20:48

图片预览

文档简介

课题 2.6实数(一)
学生掌握目标 1.了解实数的意义,能对实数按要求进行分类;
2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
3.了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小。
本课重点 1.了解实数意义,能对实数进行分类;
2.在实数范围求相反数、倒数和绝对值;
教学思路(根据课件写出书本内容、堂上练习内容)第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?第二环节:实数概念内容:把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)第三环节:实数分类内容:1.你能把上面各数分别填入下面相应的集合内吗?2.0属于正数吗?0属于负数吗?知识整理:无理数和有理数一样,也有正负之分。1.从符号考虑,实数可以分为正实数、0、负实数,即:2.另外从实数的概念也可以进行如下分类:第四环节:实数的相关概念内容1:1.在有理数中,数a的相反数是什么?绝对值是什么?当a不为0时,它的倒数是什么?2.的相反数是什么?的倒数是什么?,0,—π的绝对值分别是什么?内容2:想一想:1.3—π的绝对值是 。2.想一想:a是一个实数,它的相反数是 ,它的绝对值是 ,当a≠0时,它的倒数是 。知识整理(1)相反数:a与—a互为相反数;0的相反数仍是0;(2)倒数:当a≠0时,a与互为倒数(0没有倒数);(3)绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;即:第五环节:探究——实数与数轴上点之间的对应关系内容1:如图所示,认真观察,探讨下列问题:议一议:(1)如图,OA=OB,数轴上A点对应的数表示什么?它介于哪两个整数之间?(2)如果将所有有理数都标到数轴上,那么数轴被填满了吗?知识整理(1)每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的;(2)在数轴上,右边的点表示的数总比左边的点表示的数大。第六环节:课堂练习内容:1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数; (3)带根号的数都是无理数。2.求下列各数的相反数、倒数和绝对值:(1); (2); (3).3.在数轴上作出对应的点。
学生课后作业 习题2.7
本周小结反思 实数作为有理数的扩张,其具体研究内容和有理数完全类似,因此学习中,本课时设计中,十分关注前后知识之间的内在联系,关注运用类比的思想学习新的知识,这是本课设计中一个十分显著的特点。实际上,类似的问题在其他知识学习中同样存在,注意体会。

有理数集合

无理数集合

正数集合

负数集合
0
1
2
-1
-2
A
B