2021年度北师大版七年级数学下册《1.2幂的乘方积的乘方》同步提升训练(附答案)
1.已知2m+3n=3,则9m?27n的值是( )
A.9
B.18
C.27
D.81
2.计算:﹣(x3)5=( )
A.x15
B.﹣x8
C.x8
D.﹣x15
3.下列各式中,计算正确的是( )
A.(a3)2=a5
B.a2+a3=a5
C.(ab2)3=ab6
D.a2?a3=a5
4.计算0.752020×(﹣)2019的结果是( )
A.
B.﹣
C.0.75
D.﹣0.75
5.下列式子中,正确的有( )
①m3?m5=m15;②(a3)4=a7;③(﹣a2)3=﹣(a3)2;④(3x2)2=6x6.
A.0个
B.1个
C.2个
D.3个
6.已知:N=210×58,则N是( )位正整数
A.5
B.8
C.9
D.10
7.计算(x3)2?(﹣x)2,结果为( )
A.﹣x8
B.x7
C.﹣x7
D.x8
8.计算(﹣)2020?()2021的结果是
.
9.已知xm=,xn=16,则x2m+n的值为
.
10.计算(﹣2a)2﹣2a2,结果是
.
11.如果5n=a,4n=b,那么20n=
.
12.计算:﹣32021×(﹣)2020=
.
13.若a3m+n=54,am=3,则an=
.
14.计算:﹣(﹣2a2b4)3=
.
15.若2m=a,32n=b,m,n为正整数,则23m+10n=
.
16.若3m=12,3n=6,则3m+1=
,3m+2n=
.
17.已知2m+2×42m﹣1×8m=48,则m的值为
.
18.已知xm=2,yn=5,那么(xmyn)2=
.
19.(1)已知ax=5,ax+y=25,求ax+ay的值.
(2)已知a=355,b=444,c=533,试比较a、b、c的大小,并用“<”连接.
20.计算:a3?a4?a+(a2)4﹣(﹣2a4)2.
21.计算:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3.
22.已知n为正整数,且x2n=4
(1)求xn﹣3?x3(n+1)的值;
(2)求9(x3n)2﹣13(x2)2n的值.
23.计算;
(1)x?x2?x3+(x2)3﹣2(x3)2;
(2)[(x2)3]2﹣3(x2?x3?x)2;
(3)(﹣2anb3n)2+(a2b6)n;
(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.
24.计算:(x4)2+(x2)4﹣x(x2)2?x3﹣(﹣x)3?(﹣x2)2?(﹣x)
25.计算:()100×(1)100×(0.5×3)2021×(﹣2×)2022.
26.探究:22﹣21=2×21﹣1×21=2(
)
23﹣22=
=2(
),
24﹣23=
=2(
),
……
(1)请仔细观察,写出第4个等式;
(2)请你找规律,写出第n个等式;
(3)计算:21+22+23+…+22021﹣22022.
27.阅读材料,根据材料回答:
例如1:(﹣2)3×33=(﹣2)×(﹣2)×(﹣2)×3×3×3
=[(﹣2)×3]×[(﹣2)×3]×[(﹣2)×3]
=[(﹣2)×3]3=(﹣6)3=﹣216.
例如2:
86×0.1256=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125
=(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)
=(8×0.125)6=1.
(1)仿照上面材料的计算方法计算:;
(2)由上面的计算可总结出一个规律:(用字母表示)an?bn=
;
(3)用(2)的规律计算:﹣0.42018××.
参考答案
1.解:9m?27n=32m×33n=32m+3n,
∵2m+3n=3,
∴32m+3n=33=27.
故选:C.
2.解:﹣(x3)5=﹣x3×5=﹣x15,
故选:D.
3.解:A、(a3)2=a6,故此选项错误;
B、a2+a3,无法合并,故此选项错误;
C、(ab2)3=a3b6,故此选项错误;
D、a2?a3=a5,故此选项正确.
故选:D.
4.解:0.752020×(﹣)2019
=
====.
故选:D.
5.解:①m3?m5=m8;故①结论错误;
②(a3)4=a12;故②结论错误;
③(﹣a2)3=﹣(a3)2;故③结论正确;
④(3x2)2=9x4;故④结论错误.
所以正确的有1个.
故选:B.
6.解:原式=22×28×58,=22×(2×5)8,=22×108,=4×108.
∵108是9位数,
∴4×108是九位数.
故选:C.
7.解:(x3)2?(﹣x)2=x6?x2=x8.
故选:D.
8.解:(﹣)2020?()2021==
===.
故答案为:.
9.解:因为xm=,xn=16,
所以x2m+n=x2m?xn=(xm)2?xn==.
故答案为:.
10.解:(﹣2a)2﹣2a2=4a2﹣2a2=2a2,
故答案为:2a2.
11.解:∵5n=a,4n=b,
∴20n=(5×4)n=5n?4n=ab.
故答案为:ab.
12.解:﹣32021×(﹣)2020=﹣32020×3×(﹣)2020=﹣[3×(﹣)]2020×3
=﹣1×3=﹣3,
故答案为:﹣3.
13.解:∵a3m+n=(am)3?an=54,am=3,
∴.
故答案为:2
14.解:﹣(﹣2a2b4)3=8a6b12.
故答案为:8a6b12.
15.解:32n=25n=b,
则23m+10n=23m?210n=a3?b2=a3b2.
故答案为:a3b2.
16.解:因为3m=12,3n=6,
所以3m+1=3m×3=12×3=36,3m+2n=3m?32n=3m?(3n)2=12×62=12×36=432.
故答案为:36;432.
17.解:∵2m+2×42m﹣1×8m=48,
∴2m+2×24m﹣2×23m=216,
28m=216,
故8m=16,
解得:m=2.
故答案为:2.
18.解:∵xm=2,yn=5,
∴(xmyn)2=x2m?y2n=(xm)2?(yn)2=22×52=4×25=100.
故答案为:100.
19.解:因为ax=5,ax+y=25,
所以ay=ax+y÷ax=25÷5=5,
所以ax+ay=5+5=10;
(2)因为a=255(25)11=3211,b=344=(34)11=8111,c=533=(53)11=12511,
∴255<344<533,
即a<b<c.
20.解:原式=a8+a8﹣4a8=﹣2a8.
21.解:(﹣2a)6﹣(﹣3a3)2+[﹣(2a)2]3
=(﹣2)6?a6﹣(﹣3)2?(a3)2+(﹣1)3?(2a)6
=64a6﹣9a6﹣64a6
=﹣9a6.
22.解:(1)∵x2n=4,
∴xn﹣3?x3(n+1)=xn﹣3?x3n+3=x4n=(x2n)2=42=16;
(2)∵x2n=4,
∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368.
23.解:(1)原式=x6+x6﹣2x6
=0;
(2)原式=(x6)2﹣3(x6)2
=x12﹣3x12
=﹣2x12;
(3)原式=4a2nb6n+a2nb6n
=5a2nb6n;
(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)
=9x6+x6+4x2+x3
=10x6+x3+4x2.
24.解:(x4)2+(x2)4﹣x(x2)2?x3﹣(﹣x)3?(﹣x2)2?(﹣x)=x8+x8﹣x8﹣x8=0.
25.解:原式===.
26.解:探究:22﹣21=2×21﹣1×21=21,
23﹣22=2×22﹣1×22=22,
24﹣23=2×23﹣1×23=23,
(1)25﹣24=2×24﹣1×24=24;
(2)2n+1﹣2n=2×2n﹣1×2n=2n;
(3)原式=﹣(22022﹣22021﹣22020﹣22019﹣……﹣22﹣2)
=﹣2.
故答案为:1;2×22﹣1×22;2;2×23﹣1×23;3
27.解:(1)
=
=
=
=14
=1;
(2)根据题意可得:an?bn=(ab)n,
故答案为:(ab)n;
(3)﹣0.42018××
=
=
=
=.