中小学教育资源及组卷应用平台
人教版八年级下册数学同步经典题型,常考题型集锦
第十八章
平行四边形
18.1.2
平行四边形的判定
考点一:两组对边分别相等的四边形是平行四边形
如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.
方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.
考点二:两组对角分别相等的四边形是平行四边形
如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.
(1)求∠D的度数;
(2)求证:四边形ABCD是平行四边形.
方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路.
考点三:对角线相互平分的四边形是平行四边形
如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:
(1)△AOC≌△BOD;
(2)四边形AFBE是平行四边形.
方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
考点四:平行四边形的判定定理(1)的应用
(1)利用平行四边形的判定定理(1)证明线段或角相等
如图,在平行四边形ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点,请判断线段DE,BF的位置关系和数量关系,并说明你的结论.
方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.
(2)
平行四边形的判定定理(1)的综合运用
如图,已知四边形ABCD是平行四边形,BE⊥AC于点E,DF⊥AC于点F.
(1)求证:△ABE≌△CDF;
(2)连接BF、DE,试判断四边形BFDE是什么样的四边形?写出你的结论并予以证明.
方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.
考点五:组对边平行且相等的四边形是平行四边形
(1)判定四边形是平行四边形
如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.
方法总结:根据题设条件,通过证明三角形全等,得出等量关系,继而证明四边形是平行四边形是判定时的一般解题思路.
(2)判定平行四边形的条件
四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
A.3种 B.4种 C.5种 D.6种
方法总结:熟练运用平行四边形的判定定理是解决问题的关键.
考点六:角形的中位线
(1)利用三角形中位线定理求线段的长
如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,则AC的长为( )
A.
B.3
C.6
D.9
方法总结:本题考查了三角形中位线定理,等腰三角形的判定与性质.解题的关键是熟记性质并熟练应用.
(2)利用三角形中位线定理求角
如图,C、D分别为EA、EB的中点,∠E=30°,∠1=110°,则∠2的度数为( )
A.80° B.90°
C.100°
D.110°
方法总结:中位线定理涉及平行线,所以利用中位线定理中的平行关系可以解决一些角度的计算问题.
(3)
运用三角形的中位线性质进行计算
如图,在△ABC中,AB=5,AC=3,点N为BC的中点,AM平分∠BAC,CM⊥AM,垂足为点M,延长CM交AB于点D,求MN的长.
方法总结:当已知三角形的一边的中点时,要注意分析问题中是否有隐含的中点.
(4)中位线定理的综合应用
如图,E为?ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,判断AB与OF的位置关系和大小关系,并证明你的结论.
方法总结:本题综合的知识点比较多,解答本题的关键是判断出OF是△ABC的中位线.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
人教版八年级下册数学同步经典题型,常考题型集锦
第十八章
平行四边形
18.1.2
平行四边形的判定
考点一:两组对边分别相等的四边形是平行四边形
如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.
解析:根据题意,利用全等可证明AD=FE,DF=AE,从而可判断四边形DAEF为平行四边形.
解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC=DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).
方法总结:利用“两组对边分别相等的四边形是平行四边形”时,证明边相等,可通过证明三角形全等解决.
考点二:两组对角分别相等的四边形是平行四边形
如图,在四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.
(1)求∠D的度数;
(2)求证:四边形ABCD是平行四边形.
解析:(1)可根据三角形的内角和为180°得出∠D的大小;(2)根据“两组对角分别相等的四边形是平行四边形”进行证明.
(1)解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=180°-40°-85°=55°;
(2)证明:∵AB∥DC,∴∠2=∠CAB=40°,∠DCB+∠B=180°,∴∠DAB=∠1+∠CAB=125°,∠DCB=180°-∠B=125°,∴∠DAB=∠DCB.又∵∠D=∠B=55°,∴四边形ABCD是平行四边形.
方法总结:根据两组对角分别相等判断四边形是平行四边形,是解题的常用思路.
考点三:对角线相互平分的四边形是平行四边形
如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:
(1)△AOC≌△BOD;
(2)四边形AFBE是平行四边形.
解析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC≌△BOD;(2)此题已知AO=BO,要证四边形AFBE是平行四边形,根据全等三角形,只需证OE=OF即可.
证明:(1)∵AC∥BD,∴∠C=∠D.在△AOC和△BOD中,∵∴△AOC≌△BOD(AAS);
(2)∵△AOC≌△BOD,∴CO=DO.∵E、F分别是OC、OD的中点,∴OF=OD,OE=OC,∴EO=FO.又∵AO=BO,∴四边形AFBE是平行四边形.
方法总结:在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
考点四:平行四边形的判定定理(1)的应用
(1)利用平行四边形的判定定理(1)证明线段或角相等
如图,在平行四边形ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点,请判断线段DE,BF的位置关系和数量关系,并说明你的结论.
解析:根据平行四边形的性质“对角线互相平分”得出OA=OC,OB=OD.利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定四边形BFDE是平行四边形,从而得出DE=BF,DE∥BF.
解:DE=BF,DE∥BF.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵E,F分别是OA,OC的中点,∴OE=OF,∴四边形BFDE是平行四边形,∴DE=BF,DE∥BF.
方法总结:平行四边形的性质也是证明线段相等或平行的重要方法.
(2)
平行四边形的判定定理(1)的综合运用
如图,已知四边形ABCD是平行四边形,BE⊥AC于点E,DF⊥AC于点F.
(1)求证:△ABE≌△CDF;
(2)连接BF、DE,试判断四边形BFDE是什么样的四边形?写出你的结论并予以证明.
解析:(1)根据“AAS”可证出△ABE≌△CDF;(2)首先根据△ABE≌△CDF得出AE=FC,BE=DF.再利用已知得出△ADE≌△CBF,进而得出DE=BF,即可得出四边形BFDE是平行四边形.
(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°.在△ABE和△CDF中,∴△ABE≌△CDF(AAS);
(2)解:四边形BFDE是平行四边形.理由如下:∵△ABE≌△CDF,∴AE=FC,BE=DF.∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAC=∠BCA.在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴DE=BF,∴四边形BFDE是平行四边形.
方法总结:熟练运用平行四边形的性质,可证明三角形全等,证明边相等,再利用两组对边分别相等可判定四边形是平行四边形.
考点五:组对边平行且相等的四边形是平行四边形
(1)判定四边形是平行四边形
如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.
解析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB.根据“一组对边平行且相等的四边形是平行四边形”可证出结论.
解:四边形ABCD是平行四边形.理由如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.
方法总结:根据题设条件,通过证明三角形全等,得出等量关系,继而证明四边形是平行四边形是判定时的一般解题思路.
(2)判定平行四边形的条件
四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
A.3种 B.4种 C.5种 D.6种
解析:①②组合可根据“一组对边平行且相等的四边形是平行四边形”判定出四边形ABCD为平行四边形;③④组合可根据“对角线互相平分的四边形是平行四边形”判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用“一组对边平行且相等的四边形是平行四边形”判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用“一组对边平行且相等的四边形是平行四边形”判定出四边形ABCD为平行四边形;综上有4种可能使四边形ABCD为平行四边形.故选B.
方法总结:熟练运用平行四边形的判定定理是解决问题的关键.
考点六:角形的中位线
(1)利用三角形中位线定理求线段的长
如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,则AC的长为( )
A.
B.3
C.6
D.9
解析:∵D、E分别为AC、BC的中点,∴DE是△ABC的中位线,∴DE∥AB,∴∠2=∠3.又∵AF平分∠CAB,∴∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=6.故选C.
方法总结:本题考查了三角形中位线定理,等腰三角形的判定与性质.解题的关键是熟记性质并熟练应用.
(2)利用三角形中位线定理求角
如图,C、D分别为EA、EB的中点,∠E=30°,∠1=110°,则∠2的度数为( )
A.80° B.90°
C.100°
D.110°
解析:∵C、D分别为EA、EB的中点,∴CD是△EAB的中位线,∴CD∥AB,∴∠2=∠ECD.∵∠1=110°,∠E=30°,∴∠2=∠ECD=80°.故选A.
方法总结:中位线定理涉及平行线,所以利用中位线定理中的平行关系可以解决一些角度的计算问题.
(3)运用三角形的中位线性质进行计算
如图,在△ABC中,AB=5,AC=3,点N为BC的中点,AM平分∠BAC,CM⊥AM,垂足为点M,延长CM交AB于点D,求MN的长.
解析:首先证明△AMD≌△AMC,得到DM=MC,易得MN为△BCD的中位线,即可解决问题.
解:∵AM平分∠BAC,CM⊥AM,∴∠DAM=∠CAM,∠AMD=∠AMC.在△AMD与△AMC中,∴△AMD≌△AMC(ASA),∴AD=AC=3,DM=CM.又∵BN=CN,∴MN为△BCD的中位线,∴MN=BD=×(5-3)=1.
方法总结:当已知三角形的一边的中点时,要注意分析问题中是否有隐含的中点.
(4)中位线定理的综合应用
如图,E为?ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC、BD于点F、G,连接AC交BD于O,连接OF,判断AB与OF的位置关系和大小关系,并证明你的结论.
解析:本题可先证明△ABF≌△ECF,从而得出BF=CF,这样就得出了OF是△ABC的中位线,从而利用中位线定理即可得出线段OF与线段AB的关系.
解:AB∥OF,AB=2OF.证明如下:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OA=OC,∴∠BAF=∠CEF,∠ABF=∠ECF.∵CE=DC,∴AB=CE.在△ABF和△ECF中,∴△ABF≌△ECF(ASA),∴BF=CF.∵OA=OC,∴OF是△ABC的中位线,∴AB∥OF,AB=2OF.
方法总结:本题综合的知识点比较多,解答本题的关键是判断出OF是△ABC的中位线.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)