第二十七章相似27.2相似三角形的判定(2)

文档属性

名称 第二十七章相似27.2相似三角形的判定(2)
格式 zip
文件大小 34.3KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2012-02-24 14:52:05

图片预览

文档简介

相似三角形的判定
学习目标
1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程.
2.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.
学习重点:相似三角形的定义与三角形相似的预备定理.
学习难点:三角形相似的预备定理的应用.
教学过程
一、精彩导入
(1)相似多边形的性质是什么?
(2) 平行线分线段成比例定理及其推论的内容是什么?
(3)相似三角形的性质和判断(用几何语音表示)
二 、明确目标.
1 问题:如果△ABC∽△ADE,那么你能找出哪些角的关系?边呢?
2 、思考
如图27.2-3,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E。
问题:
△ADE与△ABC满足“对应角相等”吗?为什么?
△ADE与△ABC满足对应边成比例吗?由“DE∥BC”的条件可得到哪些线段的比相等?
根据以前学习的知识如何把DE移到BC上去?(作辅助线EF∥AB)
你能证明AE:AC=DE:BC吗?
(4)写出△ABC∽△ADE的证明过程。
(5) 、归纳总结:判定三角形相似的(预备)定理:
平行于三角形一边的直线和其他两边相交,所成的三角形与原来三角形相似。
三、合作探究、集中交流
例1、如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.
(1)写出对应边的比例式;
(2)写出所有相等的角;
(3)若AB=10,BC=12,CA=6.求AD、DC的长.
分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与DC的长.
解:
例2(补充)如图,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.
精选精练
1.(选择)下列各组三角形一定相似的是( )
A.两个直角三角形 B.两个钝角三角形
C.两个等腰三角形 D.两个等边三角形
2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有( )
A.1对 B.2对 C.3对 D.4对
3、如图,AB∥EF∥CD,图中共有 对相似三角形,写出来并说明理由;
4.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.
五、小结
六、巩固提高
1.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式.
2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.
3.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;
(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.