中小学教育资源及组卷应用平台
1.1
分类加法计数原理与分步乘法计数原理
随堂同步进阶练习
一、单选题
1.如图,用四种不同的颜色给图中的A,B,C,D,E,F,G七个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有(
)
A.192种
B.336种
C.600种
D.624种
2.现有6种不同的颜色,给图中的6个区域涂色,要求相邻区域不同色,则不同的涂色方法共有(
)
A.720种
B.1440种
C.2880种
D.4320种
3.李明自主创业种植有机蔬菜,并且为甲、乙、丙、丁四家超市提供配送服务,甲、乙、丙、丁四家超市分别需要每隔天、天、天、天去配送一次.已知月日李明分别去了这四家超市配送,那么整个月他不用去配送的天数是(
)
A.
B.
C.
D.
4.将数字1,1,2,2,3,3排成三行两列,要求每行的数字互不相同,每列的数字也互不相同,则不同的排列方法共有(
)
A.12种
B.18种
C.24种
D.36种
5.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示1-9的一种方法.则据此,3可表示为“”,26可表示为“”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9数字表示的两位数的个数为(
)
A.9
B.13
C.16
D.18
6.某电商为某次活动设计了“和谐”、“爱国”、“敬业”三种红包,活动规定每人可以依次点击4次,每次都会获得三种红包的一种,若集全三种即可获奖,但三种红包出现的顺序不同对应的奖次也不同员工甲按规定依次点击了4次,直到第4次才获奖则他获得奖次的不同情形种数为
A.9
B.12
C.18
D.24
7.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则不同的监考方法有
A.8种
B.9种
C.10种
D.11种
8.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有?( )
A.144种
B.72种
C.64种
D.84种
9.将编号1,2,3,4的小球放入编号为1,2,3的盒子中,要求不允许有空盒子,且球与盒子的号不能相同,则不同的放球方法有
A.16种
B.12种
C.9种
D.6种
10.有2个人在一座7层大楼的底层进入电梯,假设每一个人自第二层开始在每一层离开电梯是等可能的,则2人在不同层离开的概率是 ( )
A.
B.
C.
D.
二、填空题
11.假如某人有壹元、贰元、伍元、拾元、贰拾元、伍拾元、壹佰元的纸币各两张,要支付贰佰壹拾玖(219)元的货款,则有________种不同的支付方式.
12.某超市内一排共有个收费通道,每个通道处有号,号两个收费点,根据每天的人流量,超市准备周一选择其中的处通道,要求处通道互不相邻,且每个通道至少开通一个收费点,则周一这天超市选择收费的安排方式共有__________种.
13.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.
三、解答题
14.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.
(1)选其中1人为学生会主席,有多少种不同的选法?
(2)若每年级选1人为校学生会常委,有多少种不同的选法?
(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?
15.用n种不同的颜色为下列两块广告牌着色,(如图甲、乙),要求在A,B,C,D四个区域中相邻(有公共边界)的区域不用同一颜色.
(1)若n=6,则为甲图着色时共有多少种不同的方法;
(2)若为乙图着色时共有120种不同方法,求n.
16.某学校高二年级有12名语文教师、13名数学教师、15名英语教师,市教育局拟召开一个新课程研讨会.
(1)若选派1名教师参会,有多少种派法?
(2)若三个学科各派1名教师参会,有多少种派法?
(3)若选派2名不同学科的教师参会,有多少种派法?
17.某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法.
18.将红、黄、绿、黑四种不同的颜色涂入如图中的五个区域内,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?
答案解析
1.C
【详解】
由题意,点E,F,G分别有4,3,2种涂法,
(1)当A与F相同时,A有1种涂色方法,此时B有2种涂色方法,
①若C与F相同,则C有1种涂色方法,此时D有3种涂色方法;
②若C与F不同,则D有2种涂色方法.
故此时共有种涂色方法.
(2)当A与G相同时,A有1种涂色方法,
①若C与F相同,则C有1种涂色方法,此时B有2种涂色方法,D有2种涂色方法;
②若C与F不同,则C有2种涂色方法,此时B有2种涂色方法,D有1种涂色方法.
故此时共有种涂色方法.
(3)当A既不同于F又不同于G时,A有1种涂色方法.
①若B与F相同,则C与A相同时,D有2种涂色方法,C与A不同时,C和D均只有1种涂色方法;
②若B与F不同,则B有1种涂色方法,
(i)若C与F相同,则C有1种涂色方法,此时D有2种涂色方法;
(ii)若C与F不同,则必与A相同,C有1种涂色方法,此时D有2种涂色方法.
故此时共有种涂色方法.
综上,共有种涂色方法.
故选:C.
2.D
【详解】
解:根据题意分步完成任务:
第一步:完成3号区域:从6种颜色中选1种涂色,有6种不同方法;
第二步:完成1号区域:从除去3号区域的1种颜色后剩下的5种颜色中选1种涂色,有5种不同方法;
第三步:完成4号区域:从除去3、1号区域的2种颜色后剩下的4种颜色中选1种涂色,有4种不同方法;
第四步:完成2号区域:从除去3、1、4号区域的3种颜色后剩下的3种颜色中选1种涂色,有3种不同方法;
第五步:完成5号区域:从除去1、2号区域的2种颜色后剩下的4种颜色中选1种涂色,有4种不同方法;
第六步:完成6号区域:从除去1、2、5号区域的3种颜色后剩下的3种颜色中选1种涂色,有3种不同方法;
所以不同的涂色方法:种.
故选:D.
3.B
【详解】
将月剩余的30天依次编号为1,2,330,
因为甲、乙、丙、丁四家超市分别需要每隔天、天、天、天去配送一次,且月日李明分别去了这四家超市配送,
所以李明每逢编号为3的倍数的那天要去甲超市配送,每逢编号为4的倍数的那天要去乙超市配送,每逢编号为6的倍数的那天要去丙超市配送,每逢编号为7的倍数的那天要去丁超市配送,
则李明去甲超市的天数编号为:3、6、9、12、15、18、21、24、27、30,共10天;
李明去乙超市但不去甲超市的天数编号为:4、8、16、20、28,共5天;
李明去丙超市但不去甲、乙超市的天数编号不存在,共0天;
李明去丁超市但不去甲、乙、丙超市的天数编号为:7、14,共2天;
所以李明需要配送的天数为,
所以整个月李明不用去配送的天数是.
故选:B.
4.A
【详解】
由题意,可按分步原理计数,
第一步,第一行第一个位置可从1,2,3三数字中任意选一个,有三种选法,
第二步,第一行第二个位置可从余下两数字中选一个,有二种选法,
第三步,第二行第一个位置,由于不能与第一行第一个位置上的数字同,故其有两种选法,
第四步,第二行第二个位置,由于不能与第一行第二个数字同也不能第二行第一个数字同,故它只能有一种填法,
第五步,第三行第一个数字不能与第一行与第二行的第一个数字同,故其只有一种填法,
第六步,此时只余下一个数字,故第三行第二列只有一种填法,
由分步原理知,总的排列方法有3×2×2×1×1×1=12种.
故选:A.
5.C
【详解】
根据题意,现有6根算筹,可以表示的数字组合为1、5,1、9,2、4,2、8,6、4,6、8,3、3,3、7,7、7;
数字组合1、5,1、9,2、4,2、8,6、4,6、8,3、7中,每组可以表示2个两位数,则可以表示个两位数;
数字组合3、3,7、7,每组可以表示1个两位数,则可以表示个两位数;
则一共可以表示个两位数.
故选:C
6.C
【详解】
解:根据题意,若员工甲直到第4次才获奖,则其第4次才集全“和谐”、“爱国”、“敬业”三种红包,
则甲第4次获得的红包有3种情况,
前三次获得的红包为其余的2种,有种情况,
则他获得奖次的不同情形种数为种;
故选C.
7.B
【详解】
设四位监考教师分别为,所教班分别为,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法,由分类加法计数原理,共有3+3+3=9(种)不同的监考方法,故选B.
8.D
【详解】
根据题意,分3步进行分析:①先给最上面“金”着色,有4种结果,②再给“榜”着色,有3种结果,③给“题”着色,若其与“榜”同色,则给“名”着色,有3种结果;若其与“榜”不同色,则给“榜”着色有2种结果,然后给“名”着色,有2种结果,
根据分步计数原理知共有4×3×(3+2×2)=84种结果,故选D
9.B
【详解】
详解:由题意可知,这四个小球有两个小球放在一个盒子中,当四个小球分组为如下情况时,放球方法有:
当1与2号球放在同一盒子中时,有2种不同的放法;
当1与3号球放在同一盒子中时,有2种不同的放法;
^
当1与4号球放在同一盒子中时,有2种不同的放法;
当2与3号球放在同一盒子中时,有2种不同的放法;
当2与4号球放在同一盒子中时,有2种不同的放法;
当3与4号球放在同一盒子中时,有2种不同的放法;
因此,不同的放球方法有12种,故选B.
10.A
【解析】
由题意总的基本事件为两个人各有种不同的下法,故共有种结果,而两人在同一层下,共有种结果,所以,根据古典概型概率公式可得两个人在同一层离开电梯的概率是,所以两个人在不同层离开的概率为,故选A.
11.6
【详解】
9元的支付有两种情况,或者,
①当9元采用方式支付时,
200元的支付方式为,或者或者共3种方式,
10元的支付只能用1张10元,
此时共有种支付方式;
②当9元采用方式支付时:
200元的支付方式为,或者或者共3种方式,
10元的支付只能用1张10元,
此时共有种支付方式;
所以总的支付方式共有种.
故答案为:6.
12.108
【详解】
设6个收费通道依次编号为1,2,3,4,5,6,从中选择3个互不相邻的通道,有135,136,146,246共4种不同的选法.
对于每个通道,至少开通一个收费点,即可以开通1号收费点,开通2号收费点,同时开通两个收费点,共3种不同的安排方式.
由分步乘法计数原理,可得超市选择收费的安排方式共有种.
13.60
【解析】
根据题意,第一个可以从6个钉里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号钉的时候,第二个可以选3,4,5号钉,依次选下去,可以得到共有10种方法,所以总共有种方法,故答案是60.
14.(1)15;(2)120;(3)74
【详解】
(1)选其中1人为学生会主席,各年级均可,分三类:N=5+6+4=15种;
(2)每年级选1人为校学生会常委,可分步从各年级分别选择,N=5×6×4=120种;
(3)要选出不同年级的两人参加市里组织的活动,首先按年级分三类“1,2年级”,“1,3年级”,“2,3年级”,
再各类分步选择:N=5×6+6×4+4×5=74种.;
15.(1)480(种);(2)n=5.
【详解】
(1)对区域A,B,C,D按顺序着色,
共有6×5×4×4=480(种)
(2)
对区域A,B,C,D按顺序着色,依次有n种、n-1种、n-2种和n-3种,由分步乘法计数原理,不同的着色方法共有n(n-1)(n-2(n-3)=120,整理得(n2-3n)(n2-3n+2)=120,(n2-3n)2+2(n2-3n)-120=0
n2-3n-10=0或n2-3n+12=0(舍去),解得n=5.
16.(1)40(2)2340(3)531
【解析】(1)分三类:第一类选语文老师,有12种不同选法;第二类选数学老师,有13种不同选法;第三类选英语老师,有15种不同选法,共有12+13+15=40种不同的选法.
(2)分三步:第一步选语文老师,有12种不同选法;第二步选数学老师,有13种不同选法;第三步选英语老师,有15种不同选法,共有12×13×15=2340种不同的选法.
(3)分三类:第一类选一位语文老师和一位数学老师共有12×13种不同的选法;第二类选一位语文老师和一位英语老师共有12×15种不同的选法;第三类选一位英语老师和一位数学老师共有15×13种不同的选法,共有
12×13+12×15+13×15=531种不同的选法.
17.37
【解析】首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:
第一类:2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.
第二类:2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.
第三类:2人全被选出,同理共有16种选法.
所以共有3+18+16=37种选法.
18.72(种)
【解析】解:给区域标记号A、B、C、D、E(如图所示),则A区域有4种不同的涂色方法,B区域有3种,C区域有2种,D区域有2种,但E区域的涂色依赖于B与D涂色的颜色,如果B与D颜色相同有2种涂色方法,不相同,则只有一种.因此应先分类后分步.
(1)当B与D同色时,有4×3×2×1×2=48(种).
(2)当B与D不同色时,有4×3×2×1×1=24(种).
故共有48+24=72(种)不同的涂色方法.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
1.1
分类加法计数原理与分步乘法计数原理
随堂同步基础练习
一、单选题
1.由0,1,2三个数字组成的三位数(允许数字重复)的个数为(
)
A.27
B.18
C.12
D.6
2.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点向结点传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为(
)
A.26
B.24
C.20
D.19
3.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有(
)
A.10种
B.种
C.种
D.种
4.现有4名同学去听同时进行的5个课外知识讲座,且每名同学可自由选择其中的一个讲座,不同选法的种数是(
)
A.
B.
C.
D.
二、填空题
5.如图所示的电路图,从A到B共有___________条不同的线路可通电.
6.假设今天是4月23日,某市未来六天的空气质量预报情况如图所示.该市有甲、乙、丙三人计划在未来六天(4月24日~4月29日)内选择一天出游,甲只选择空气质量为优的一天出游,乙不选择周一出游,丙不选择明天出游,且甲与乙不选择同一天出游,则这三人出游的不同方法数为________.
未来空气质量预报
明天
后天
周日
周一
周二
周三
4月24日
4月25日
4月26日
4月27日
4月28日
4月29日
优
优
优
优
良
良
7.如图,一环形花坛分成A,B,C,D四个区域,现有5种不同的花供选种,要求在每个区域种1种花,且相邻的两个区域种不同的花,则不同的种法总数为______.
8.某玩具厂参加2020年邯郸园博园产品展出,带了四款不同类型不同价格的玩具牛,它们的价格费你别是20,30,50,100,某礼品进货商想趁牛年之际搞一个玩具特卖会,准备买若干款不同类型的玩具样品(每款只购一只,且必须至少买一款),因信用卡出现故障,身上现金只剩170元,请问该礼品进货商购买玩具样品的方案有___种(用数字表示).
三、解答题
9.用5种不同的颜色给图中的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,则共有多少种不同的涂色方法?
1
2
3
4
10.甲、乙、丙、丁4名同学争夺数学、物理、化学3门学科知识竞赛的冠军,且每门学科只有1名冠军产生,则不同的冠军获得情况有多少种?
11.有一项活动,需要在3名老师、8名男同学和5名女同学中选人参加.
(1)若只需选1人参加,则有多少种不同的选法?
(2)若需要老师、男同学、女同学各1人参加,则有多少种不同的选法?
(3)若需要1名老师、1名学生参加,则有多少种不同的选法?
12.有红、黄、蓝旗各3面,每次升1面、2面、3面在某一旗杆上纵向排列,表示不同的信号,顺序不同也表示不同的信号,共可以组成多少种不同的信号?
13.一个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同.
(1)从两个口袋中任取一封信,有多少种不同的取法?
(2)从两个口袋里各取一封信,有多少种不同的取法?
(3)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的投法?
14.现有3名医生,5名护士、2名麻醉师.
(1)从中选派1名去参加外出学习,有多少种不同的选法?
(2)从这些人中选出1名医生、1名护士和1名麻醉师组成1个医疗小组,有多少种不同的选法?
15.现某学校共有34人自愿组成数学建模社团,其中高一年级13人,高二年级12人,高三年级9人.
(1)选其中一人为负责人,共有多少种不同的选法?
(2)每个年级选一名组长,有多少种不同的选法?
(3)选两人作为社团发言人,这两人需要来自不同的年级,有多少种不同的选法?
16.王华同学有课外参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读.
(1)若他从这些参考书中带1本去图书馆,则有多少种不同的带法?
(2)若带外语、数学、物理参考书各1本,则有多少种不同的带法?
(3)若从这些参考书中选2本不同学科的参考书带到图书馆,则有多少种不同的带法?
17.17.某体育彩票规定:从01至36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,此人想把这种特殊要求的号买全,需要花多少钱?
答案解析
1.B
【详解】
分三步,依次取个位?十位?百位上的数字,分别有3种?3种?2种取法,故共可得3×3×2=18个不同的三位数.
故选:B
2.D
【详解】
解:依题意,首先找出到的路线,
①单位时间内从结点经过上面一个中间节点向结点传递的最大信息量,从结点向中间的结点传出12个信息量,在该结点处分流为6个和5个,此时信息量为11;再传到结点最大传递分别是4个和3个,此时信息量为个.
②单位时间内从结点经过下面一个中间结点向结点传递的最大信息量是12个信息量,在中间结点分流为6个和8个,但此时总信息量为12(因为总共只有12个信息量);再往下到结点最大传递7个但此时前一结点最多只有6个,另一条路线到最大只能传输6个结点,所以此时信息量为个.
③综合以上结果,单位时间内从结点向结点传递的最大信息量是个.
故选:.
3.D
【详解】
共分4步:一层到二层2种,二层到三层2种,三层到四层2种,四层到五层2种,
利用分步计数原理可得:一共种.
故选:D.
4.A
【详解】
每位同学选一个课外知识讲座,属于可重复问题,所以共有种选法.
故选:A.
5.8
【详解】
解析:先分三类.第一类,经过支路①有3种方法;第二类,经过支路②有1种方法;第三类,经过支路③有2×2=4种方法,所以总的线路条数N=3+1+4=8.
故答案:8
6.85
【详解】
若甲选择周一出游,则三人出游的不同方法数;
若甲不选择周一出游,则三人出游的不同方法数.
故这三人出游的不同方法数.
故答案为:85
7.260
【详解】
根据题意,四个区域至少选用2种不同的花来种,可分三类:
第一类,种2种不同的花,有种种法;
第二类,种3种不同的花,有种种法;
第三类,种4种不同的花,有种种法.
综上,共有种种法.
故答案为:.
8.13
【详解】
解:依题意,每款只购一只,且必须至少买一款,且消费金额不能超过170元,
故可分为以下几种情况:
①只购买一款玩具样品,共四种方案
②购买两款玩具样品,
买20和30的各一只;买20和50的各一只;买20和100的各一只;买30和50的各一只;买30和100的各一只;买50和100的各一只;共六种方案;
③购买三款玩具样品
买20,30和50的各一只;买20,30和100的各一只;买20、50和100的各一只;
共3种方案;
所以购买玩具的方案共有13种;
故答案为:13
9.260
【详解】
解:第一类,1号区域与4号区域同色,此时可分三步来完成,
第一步,涂1号区域和4号区域,有5种涂法;
第二步,涂2号区域,只要不与1号区域和4号区域同色即可,因此有4种涂法;
第三步,涂3号区域,只要不与1号区域和4号区域同色即可,因此也有4种涂法.
由分步乘法计数原理知,有5×4×4=80种涂法.
第二类,1号区域与4号区域不同色,此时可分四步来完成,
第一步,涂1号区域,有5种涂法;
第二步,涂4号区域,只要不与1号区域同色即可,因此有4种涂法;
第三步,涂2号区域,只要不与1号区域和4号区域同色即可,因此有3种涂法;
第四步,涂3号区域,只要不与1号区域和4号区域同色即可,因此也有3种涂法.
由分步乘法计数原理知,有5×4×3×3=180种涂法.
依据分类加法计数原理知,不同涂色的方法种数为80+180=260.
10.64
【详解】
举例说出其中的一种情况,如数学、物理、化学3门学科知识竞赛的冠军分别是甲、甲、丙,可见研究的对象是“3门学科”,只有3门学科各产生1名冠军,才完成了这件事,而4名同学不一定每人都能获得冠军,故完成这件事分三步.
第1步,产生第1个学科冠军,它一定被其中1名同学获得,有4种不同的获得情况;
第2步,产生第2个学科冠军,因为夺得第1个学科冠军的同学还可以去争夺第2个学科的冠军,所以第2个学科冠军也是由4名同学去争夺,有4种不同的获得情况;
第3步,同理,产生第3个学科冠军,也有4种不同的获得情况;
由分步乘法计数原理知,共有种不同的冠军获得情况.
11.(1)16;(2)120;(3)39.
【详解】
解:(1)需一人参加,有三类:第一类选老师,有3种不同的选法;第二类选男生,有8种不同的选法;第三类选女生,有5种不同的选法.共有种不同的选法;
(2)需老师、男同学、女同学各一人,则分3步,第一步选老师,有3种不同的选法;第二步选男生,有8种不同的选法;第三步选女生,有5种不同的选法.共有种不同的选法;
(3)第一步选老师有3种不同的选法,第二步选学生有种不同的选法,共有种不同的选法.
12.39
【详解】
每次升1面旗可组成3种不同的信号;每次升2面旗可组成种不同的信号;每次升3面旗可组成种不同的信号,根据分类加法计数原理得,共可组成种不同的信号.
13.(1)9,(2)20,(3)
【详解】
(1)任取一封信,不论从哪个口袋里取,都能单独完成这件事,是分类问题
从第一个口袋中取一封信有5种情况,从第二个口袋中取一封信有4种情况
则共有种
(2)各取一封信,不论从哪个口袋中取,都不能完成这件事,是分步问题
应分两个步骤完成,第一步,从第一个口袋中取一封信有5种情况,
第二步,从第二个口袋中取一封信有4种情况
由分步乘法计数原理,共有种
(3)第一封信投入邮筒有4种可能
第二封信投入邮筒有4种可能
第九封信投入邮筒有4种可能
由分步乘法计数原理可知,共有种不同的投法
14.(1)10;(2)30
【详解】
(1)分三类:第一类:选出的是医生,共有3种选法;
第二类:选出的是护士,共有5种选法;
第三类:选出的是麻醉师,共有2种选法;
根据分类加法计数原理,共有3+5+2=10种选法.
(2)分三步:第一步:选出1名医生,共有3种选法;
第二步:选出1名护士,共有5种选法;
第三步:选出1名麻醉师,共有2种选法;
根据分步乘法计数原理,共有种选法.
15.(1)34;(2)1404;(3)381.
【详解】
(1)根据题意,选其中一人为负责人,有3种情况,
若选出的是高一学生,有13种情况,
若选出的是高二学生,有12种情况,
若选出的是高三学生,有9种情况,
由分类计数原理可得,共有12+13+9=34种选法.
(2)根据题意,从高一学生中选出1人,有13种情况;
从高二学生中选出1人,有12种情况;
从高三学生中选出1人,有9种情况;
由分步计数原理,可得共有12×13×9=1404种选法.
(3)根据题意,分三种情况讨论:
若选出的是高一、高二学生,有12×13=156种情况,
若选出的是高一、高三学生,有13×9=117种情况,
若选出的是高二、高三学生,有12×9=108种情况,
由分类计数原理可得,共有156+117+108=381种选法.
16.(1)12种;
(2)60种;
(3)47种.
【详解】
(1)完成的事情是带一本书,无论带外语书,还是数学书、物理书,事情都已完成,从而确定应用分类加法计数原理,结果为5+4+3=12种.
(2)完成的事情是带3本不同学科的参考书,只有从外语、数学、物理书中各选1本后,才能完成这件事,因此应用分步乘法计数原理,结果为5×4×3=60种.
(3)选1本外语书和选1本数学书应用分步乘法计数原理,有5×4=20种选法;同样,选外语书、物理书各1本,有5×3=15种选法;选数学书、物理书各1本,有4×3=12种选法.即有三类情况,应用分类加法计数原理,结果为20+15+12=47种.
17.8640元
【解析】第一步:从01至10中选3个连续的号码有01,02,03;02,03,04;…;08,09,10,共8种不同的选法;第二步:同理,从11至20中选2个连续的自然数有9种不同的选法;第三步:从21至30中选一个号码有10种不同的选法;第四步:从31至36中选一个号码有6种不同的选法.共可组成8×9×10×6=4320注,所以需要花费2×4320=8640元钱.
18.1024
64
【详解】
由题意知,每名学生都有4种报名方法,
因此,5名学生的报名方法的种数为.
由题意知,每封信放入邮筒有4种不同的投递方式,
由分步乘法计数原理可知,
将三封信投入四个邮筒共有种不同的投递方式.
故答案为:;.
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)