19.1.平行四边形的性质(2)学习单
如东县港口中学初二数学备课组 2012-02-23
学习目标:
一.知识与技能
1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
3.培养学生的推理论证能力和逻辑思维能力.
二.过程与方法
经历探索平行四边形的有关概念和性质的过程, 发展学生的探究意识和合情推理的能力。
三.情感态度与价值观.
培养学生严谨的推理能力,和合作交流的习惯,体会平行四边形的实际应用价值。
重点;理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
难点:1、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.
2、培养学生的推理论证能力和逻辑思维能力.
师生互动过程
第一步:课堂引入
1.复习提问:
(1)什么样的四边形是平行四边形?
四边形与平行四边形的关系是:
(2)平行四边形的性质:
①具有一般四边形的性质(内角和是).
②边:
平行四边形的对边相等
③角:平行四边形的对角相等,邻角互补.
第二步:探究新知:
【探究】:
学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?
【结论】:
(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;
(2)平行四边形的对角线互相平分.
你会用全等三角形来证明“平行四边形的对角线互相平分.”吗?
平行四边形的高:在平行四边形中,从一条边上的任意一点,向对边画垂线,这点与垂足间的距离(或从这点到对边垂线段的长,或者说这条边和对边的距离),叫做以这条边为底的平行四边形的高.这里所说的“底”是相对高而言的.
平行四边形的面积等于它的底和高的积,即=a·h.
(其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高)
注意:如图(1).要避免学生发生如图(2)的错误.为了区别,有时也可以把高记成、,表明它们所对应的底是a或AB.
第二步:应用举例:
例1(补充) 已知:如图4-21, ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.
求证:OE=OF,AE=CF,BE=DF.
证明:在 ABCD中,AB∥CD,
∴ ∠1=∠2.∠3=∠4.
又 OA=OC(平行四边形的对角线互相平分),
∴ △AOE≌△COF(ASA).
∴ OE=OF,AE=CF(全等三角形对应边相等).
∵ ABCD,∴ AB=CD(平行四边形对边相等).
∴ AB—AE=CD—CF. 即 BE=FD.
※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.
例2(教材例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.
分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)
第三步:随堂练习
1.在平行四边形中,周长等于48,
已知一边长12,求各边的长
已知AB=2BC,求各边的长
已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长
2.如图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是____ ___cm.
3.ABCD一内角的平分线与边相交并把这条边分成,的两条线段,则ABCD的周长是__ ___.
第四步:课后练习
1.判断对错
(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD. ( )
(2)平行四边形两条对角线的交点到一组对边的距离相等. ( )
(3)平行四边形的两组对边分别平行且相等. ( )
(4)平行四边形是轴对称图形. ( )
2.在 ABCD中,AC=6、BD=4,则AB的范围是__ ______.
3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)
和16,则这个四边形的周长是 .
4.公园有一片绿地,它的形状是平行四边形,绿地上要修
几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,
求小路BC,CD,OC的长,并算出绿地的面积.
课后小结与反思:
A
B
C
D
O