第1课时 课题:§7.1正切
[学习目标]
1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。
2、了解计算一个锐角的正切值的方法。
[学习重点与难点]
计算一个锐角的正切值的方法
[学习过程]
一、情景创设
1、观察:如图,是某体育馆,
为了方便不同需求的观众,
该体育馆设计了多种形式的台阶。
2、问题:下列图中的两个台阶哪个更陡?你是怎么判断的?
二、探索活动
1、思考与探索一:
如何描述台阶的倾斜程度呢?
可通过测量BC与AC的长度,再算出它们的比,
来说明台阶的倾斜程度。
(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)
答:_________________________________________.
②讨论:你还可以用其它什么方法?能说出你的理由吗?
答:_________________________________________.
2、思考与探索二:
(1)如图,一般地,如果锐角A的大小已确定,我们可以作出无数个相似的RtAB1C1,RtAB2C2,RtAB3C3……,那么有:Rt△AB1C1∽________∽________……
根据相似三角形的性质,得:
=_________=_________=……
(2)由上可知:如果直角三角形的一个锐角的大小已确定,那么这个锐角的对边与这个角的邻边的比值也_________。
3、正切的定义
如图,在Rt△ABC中,∠C=90°,a、b分别是∠A的对边和邻边。我们将∠A的对边a与邻边b的比叫做∠A_______,记作______。
即:tanA=________=__________
(你能写出∠B的正切表达式吗?)试试看.
4、牛刀小试
根据下列图中所给条件分别求出下列图中∠A、∠B的正切值。
(通过上述计算,你有什么发现?_____________________________________.)
5、思考与探索三:
怎样计算任意一个锐角的正切值呢?
(1)例如,根据下图,我们可以这样来确定tan65°的近似值:当一个点从点O出发沿着65°线移动到点P时,这个点向右水平方向前进了1个单位,那么在垂直方向上升了约2.14个单位。于是可知,tan65°的近似值为2.14。
(2)请用同样的方法,写出下表中各角正切的近似值。
θ tanθ
10°
20°
30°
45°
55°
65° 2.14
(3)利用计算器我们可以更快、更精确地求得各个锐角的正切值。
(4)思考:当锐角α越来越大时,α的正切值有什么变化?
___________________________________________________________.
三、随堂练习
1、在Rt△ABC中,∠C=90°,AC=1,AB=3,则tanA=________,tanB=______。
2、如图,在正方形ABCD中,点E为AD的中点,连结EB,
设∠EBA=α,则tanα=_________。
四、请你说说本节课有哪些收获?
五、拓宽与提高
1、如图是一个梯形大坝的横断面,
根据图中的尺寸,请你通过计算判断
左右两个坡的倾斜程度更大一些?
2、在直角坐标系中,△ABC的三个顶点的坐标分别为A(-4,1),B(-1,3),C(-4,3),试求tanB的值。
第2课时 课题:§7.2正弦、余弦(1)
[学习目标]
1、理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。
2、能用函数的观点理解正弦、余弦和正切。
[学习重点与难点]
在直角三角形中求出某个锐角的正弦和余弦值。
[学习过程]
一、情景创设
1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?
2、问题2:在上述问题中,他在水平方向又分别前进了多远?
二、探索活动
1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________;它的邻边与斜边的比值___________。
(根据是______________________________________。)
2、正弦的定义
如图,在Rt△ABC中,∠C=90°,
我们把锐角∠A的对边a与斜边c的比叫做∠A
的______,记作________,
即:sinA=________=________.
3、余弦的定义
如图,在Rt△ABC中,∠C=90°,
我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,
即:cosA=______=_____。
(你能写出∠B的正弦、余弦的表达式吗?)试试看.
___________________________________________________.
4、牛刀小试
根据如图中条件,分别求出下列直角三角形中锐角的正弦、余弦值。
5、思考与探索
怎样计算任意一个锐角的正弦值和余弦值呢?
如图,当小明沿着15°的斜坡行走了1个单位长度时,他的位置升高了约
0.26个单位长度,在水平方向前进了约0.97个单位长度。
根据正弦、余弦的定义,可以知道:
sin15°=0.26,cos15°=0.97
(2)你能根据图形求出sin30°、cos30°吗?
sin75°、cos75°呢?
sin30°=_____,cos30°=_____.
sin75°=_____,cos75°=_____.
(3)利用计算器我们可以更快、更精确地求得各个锐角的正弦值和余弦值。
(4)观察与思考:
从sin15°,sin30°,sin75°的值,你们得到什么结论?____________________。
从cos15°,cos30°,cos75°的值,你们得到什么结论?____________________。
当锐角α越来越大时,它的正弦值是怎样变化的?余弦值又是怎样变化的?
____________________________________________________________。
6、锐角A的正弦、余弦和正切都是∠A的__________。
三、随堂练习
1、如图,在Rt△ABC中,∠C=90°,
AC=12,BC=5,则sinA=_____,
cosA=_____,sinB=_____,cosB=_____。
2、在Rt△ABC中,∠C=90°,AC=1,BC=,则sinA=_____,cosB=_______,cosA=________,sinB=_______.
3、如图,在Rt△ABC中,∠C=90°,
BC=9a,AC=12a,AB=15a,tanB=________,
cosB=______,sinB=_______
四、请你谈谈本节课有哪些收获?
五、拓宽和提高
已知在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,且a:b:c=5:12:13,试求最小角的三角函数值。
第3课时 课题:§7.2正弦、余弦(2)
[学习目标]
1、能够根据直角三角形的边角关系进行计算;
2、能用三角函数的知识根据三角形中已知的边和角求出未知的边和角。
[学习重点与难点]
用函数的观点理解正切,正弦、余弦
[学习过程]
一、知识回顾
1、在Rt△ABC中,∠C=90°,分别写出∠A的三角函数关系式:sinA=_____,cosA=_____,tanA=_____。∠B的三角函数关系式_________________________。
2、比较上述中,sinA与cosB,cosA与sinB,tanA与tanB的表达式,你有什么发现?______________________________________________________。
3、练习:
①如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则sinA=_____,cosA=_____,tanA=_____。
②如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,则sinB=_____,cosB=_____,tanB=_____。
③在Rt△ABC中,∠B=90°,AC=2BC,则sinC=_____。
④如图,在Rt△ABC中,∠C=90°,AB=10,sinA=,则BC=_____。
⑤在Rt△ABC中,∠C=90°,AB=10,sinB=,则AC=_____。
⑥如图,在Rt△ABC中,∠B=90°,AC=15,sinC=,则AB=_____。
⑦在Rt△ABC中,∠C=90°,cosA=,AC=12,则AB=_____,BC=_____。
二、例题
例1、小明正在放风筝,风筝线与水平线成35°角时,小明的手离地面1m,
若把放出的风筝线看成一条线段,长95m,求风筝此时的高度。
(精确到1m)
(参考数据:sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)
例2、工人师傅沿着一块斜靠在车厢后部的木板往汽车上推一个油桶(如图),已知木板长为4m,车厢到地面的距离为1.4m。
(1)你能求出木板与地面的夹角吗?
(2)请你求出油桶从地面到刚刚到达车厢时的移动的水平距离。(精确到0.1m)
(参考数据:sin20.5°≈0.3500,cos20.5°≈0.9397,tan20.5°≈0.3739)
三、随堂练习
1、小明从8m长的笔直滑梯自上而下滑至地面,已知滑梯的倾斜角为40°,求滑梯的高度。(精确到0.1m)
(参考数据:sin40°≈0.6428,cos40°≈0.7660,tan40°≈0.8391)
2、一把梯子靠在一堵墙上,若梯子与地面的夹角是68°,而梯子底部离墙脚1.5m,求梯子的长度(精确到0.1m)
(参考数据:sin68°≈0.9272,cos68°≈0.3746,tan68°≈2.475)
四、本课小结
谈谈本课的收获和体会
五、课外练习
1、已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CD=8cm,AC=10cm,求AB,BD的长。
2、等腰三角形周长为16,一边长为6,求底角的余弦值。
3、在△ABC中,∠C=90°,cosB=,AC=10,求△ABC的周长和斜边AB边上的高。
4、在Rt△ABC中,∠C=90°,已知cosA=,请你求出sinA、cosB、tanA、tanB的值。
5、在△ABC中,∠C=90°,D是BC的中点,且∠ADC=50°,AD=2,求tanB的值。(精确到0.01m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°≈1.1918)
第4课时 课题:§7.3特殊角的三角函数
【学习目标】
能通过推理得30°、45°、60°角的三角函数值,进一步体会三角函数的意义.
会计算含有30°、45°、60°角的三角函数的值.
能根据30°、45°、60°角的三角函数值,说出相应锐角的大小.
经历探索30°、45°、60°角的三角函数值的过程,发展同学们的推理能力和计算能力.
【学习过程】
一、情景创设
将两个大小形状完全一样的含30°角的三角板按图示拼在一起,你知道△ABB′是什么形状的三角形吗?你能否根据这个图形求出sin30°的值?把你对问题的理解与同学交流。
探索活动
活动一.观察与思考
你能分别说出30°、45°、60°角的三角函数值吗?
2.活动二.根据以上探索完成下列表格
30° 45° 60°
sinθ
cosθ
tanθ
典例分析
例1:求下列各式的值。
(1)2sin30°-cos45° (2)sin60°·cos60° (3)sin230°+cos230°
练习:计算.
(1)cos45°-sin30° (2)sin260°+cos260°
(3)tan45°-sin30°·cos60° (4)
例2.求满足下列条件的锐角α:
(1) cosα= (2)2sinα=1 (3)2sinα-=0 (4)tanα-1=0
练习:
若sinα=,则锐角α=________.若2cosα=1,则锐角α=_________.
若sinα=,则锐角α=_________.若sinα=,则锐角α=_________.
若∠A是锐角,且tanA=,则cosA=_________.
求满足下列条件的锐角α:
(1)cosα-=0 (2)-tanα+=0
(3)cosα-2=0 (4)tan(α+10°)=
9.已知α为锐角,当无意义时,求tan(α+15°)-tan(α-15°)的值.
五.拓展与延伸
1.等腰三角形的一腰长为6㎝,底边长为6㎝,请你判断这个三角形是锐角三角形、直角三角形还是钝角三角形
2.已知△ABC中,AD是BC边上的高,AD=2,AC=2,AB=4,求∠BAC的度数.
3.3.做一做:如图所示,在Rt△ABC中,∠C=90°,∠CAB=30°,延长CA到D使AD=AB,易知∠D=15°
⑴、若设BC= x,请你尝试用含x的代数式表示AC、AB、CD;
⑵、求tan15°、cot15°的值
第5课时 课题:7.5解直角三角形
教学目标
使学生了解解直角三角形的概念,能运用直角三角形的角与角(两锐角互余),边与边(勾股定理)、边与角关系解直角三角形。
教学过程
一、引入新课
如图所示,一棵大树在一次强烈的台风中于地面10米处折断倒下,树顶落在离数根24米处。问大树在折断之前高多少米
显然,我们可以利用勾股定理求出折断倒下的部分
的长度为=26 26+10=36所以,
大树在折断之前的高为36米。
二、新课
1.解直角三角形的定义。
任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出末知元素的过程,叫做解直角三角形。像上述的就是由两条直角边这两个元素,利用勾股定理求出斜边的长度,我们还可以利用直角三角形的边角关系求出两个锐角,像这样的过程,就是解直角三角形。
2.解直角三角形的所需的工具。
(1)两锐角互余∠A+∠B=90°
(2)三边满足勾股定理a2+b2=c2
(3)边与角关系sinA=cosB=,cosA=sinB=,tanA=cotB=,cotA=tanB=。
3.例题讲解。
例1.如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。
分析:本题中,已知条件是什么 (AB=2000米,
∠CAB=90°- ∠CAD=50°),那么求AC的长是用
“弦”还是用“切”呢 求BC的长呢 显然,
AC是直角三角形的斜边,应该用余弦函数,
而求BC的长可以用正切函数,也可以用余切函数。
例2.校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少米?
讲解后让学生思考以下问题:
(1)在求出后,能否用勾股定理求得BC;
(2)在这题中,是否可用正弦函数求AC,是否可以用余切函数求得BC。
通过这道例题的分析和挖掘,使学生明确在求解直角三角形时可以根据题目的具体条件选择不同的“工具”以达到目的。
4.从上面的两道题可以看出,若知道两条边利用勾股定理就可以求出第三边,进而求出两个锐角,若知道一条边和一个锐角,可以。利用边角关系求出其他的边与角。所以,解直角三角形无非以下两种情况:
(1)已知两条边,求其他边和角。
(2)已知一条边和一个锐角,求其他边角。
三、练习
课本第113页练习的第l、2题(帮助学生画出第2题的图形)。
四、小结
本节课我们利用直角三角形的边与边、角与角、边与角的关系,由已知元素求出未知元素,在做题目时,学生们应根据题目的具体条件,正确选择上述的“工具”,求出题目中所要求的边与角。
五、作业
课本第53页习题第1、2题
第6课时 课题:7.6锐角三角函数的简单应用(1)
教学目标
使学生进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
教学过程
一、给出仰角、俯角的定义
在本章的开头,我们曾经用自制的测角仪测出视线(眼睛与旗杆顶端的连线)与水平线的夹角,那么把这个角称为什么角呢
如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。右图中的∠1就是仰角, ∠2就是俯角。
二、例题讲解
例1.如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用1.20米的测角仪CD测得电线杆顶端B的仰角a=22°,求电线杆AB的高度。
分析:因为AB=AE+BE,AE=CD=1.20米,所以只要求出BE的长度,问题就得到解决,在△BDE中,已知DE=CA=22.7米,∠BDE=22°,那么用哪个三角函数可解决这个问题呢 显然正切或余切都能解决这个问题。
例2.如图,A、B是两幢地平高度相等、隔岸相望的建筑物,B楼不能到达,由于建筑物密集,在A楼的周围没有开阔地带,为测量B楼的高度,只能充分利用A楼的空间,A楼的各层都可到达且能看见B楼,现仅有测量工具为皮尺和测角器(皮尺可用于测量长度,测角器可以测量仰角、俯角或两视线的夹角)。
(1)你设计一个测量B楼高度的方法,要求写出测量步骤和必需的测量数据 (用字母表示),并画出测量图形。
(2)用你测量的数据(用字母表示)写出计算B楼高度的表达式。
分析:如右图,由于楼的各层都能到达,所以A楼的高度可以测量,我们不妨站在A楼的顶层测B楼的顶端的仰角,再测B楼的底端的俯角,这样在Rt△ABD中就可以求出BD的长度,因为AE=BD,而后Rt△ACE中求得CE的长度,这样CD的长度就可以求出.
请同学们想一想,是否还能用其他的方法测量出B楼的高度。
三、练习
课本第114页练习的第l、2题。
四、小结
本节课我们学习了有关仰角、俯角的解直角三角形的应用题,对于这些问题,一方面要把它们转化为解直角三角形的数学问题,另一方面,针对转化而来的数学问题选用适当的数学知识加以解决。
五、作业
课本58页1、2、3、4题
第7课时 课题:7.6锐角三角函数的简单应用(2)
教学目标
使学生知道测量中坡度、坡角的概念,掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度有关的实际问题,进一步培养学生把实际问题转化为数学问题的能力。
教学过程
一、引入新课
如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大 显然,斜坡A1Bl的倾斜程度比较大,说明∠A1>∠A。从图形可以看出,>,即tanAl>tanA。
在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。
二、新课
1.坡度的概念,坡度与坡角的关系。
如上图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=,坡度通常用l:m的形式,例如上图中的1:2的形式。坡面与水平面的夹角叫做坡角。从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡。
2.例题讲解。
例1.如图,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°,求路基下底的宽。(精确到 0.1米)
分析:四边形ABCD是梯形,通常的辅助线是过上底的两个顶点引下底的垂线,这样,就把梯形分割成直角三角形和矩形,从题目来看,下底AB=AE+EF+BF,EF=CD=12.51米.AE在直角三角形AED中求得,而BF可以在直角三角形BFC中求得,问题得到解决。
例2.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。和坝底宽AD。(i=CE:ED,单位米,结果保留根号)
三、练习
课本第58页的练习1、2、3。
四、小结
会知道坡度、坡角的概念能利用解直角三角形的知识,解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决。
五、能力升级
1、如图,直线a∥b,c∥d,a与d之间所夹的锐角为∠A,两组平行线之间的距离都等于1,则阴影部分的面积为( )
(A) (B)cosA (C) (D)sinA
2、如图,△ABC中,∠C=90°,∠A=45°,
∠EBC=∠DEC=30°,若AE=6cm,求DC的长。
拓展提高
3、如图,在△ABD中,∠B=90°,C是BD上一点,DC=10,
∠ADB=45°,∠ACB=60°求AB的长
六、作业
课本58页5、6、7、8题
第8课时 课题:7.6锐角三角函数的简单应用(3)
【情境问题】
某省将东西两处的A、B两所大学合并成一所综合性大学,为了方便A、B两地师生的交流,学校准备在相距2km的A、B两地之间修筑一条笔直的公路,经测量,在A地的北偏东60°方向,B地的西偏北45°方向的C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?
【自主探究】
1、画一画:根据情境问题,画出符合条件的示意图。
2、想一想:要看计划修筑的这条公路会不会穿过公园,就是要比较公园的半径和公园C到AB的距离的大小,请问怎样根据公园的半径和公园C到AB的距离的大小判断公路会不会穿过公园?在图上画出公园C到AB的距离的线段CD?
3、一只船以每小时16海里的速度自东向西航行,上午8点到达塔P的北偏东30°的A处,10点到达灯塔的正北方B处,画出航行示意图,并求这时船到灯塔的距离。
4、练一练:如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船行了10海里后到达点B,这时测得小岛O在北偏东45°。由于以小岛O为圆心16海里为半径的范围内有暗礁,如果该船不改变航向继续航行,有没有触礁的危险?通过计算说明。(供选用数据:,)
5、试一试:如图某学校的教室A点东240米的O点处有一货场,经过O点沿北偏西60°方向有一条公路,假定运货车辆形成的噪音影响的范围在130米以内。(1)通过计算说明这条公路上车辆的噪音必然对学校造成影响;(2)为了消除噪音对学校的影响,计划在公路边修筑一段消音墙,请你计算消音墙的长度(只考虑声音的直线传播)。
【回顾反思】
1、弄清方位角的意义;能根据题目的意思画出符合条件的图形。
2、解决实际问题,关键是如何将实际问题转化为数学问题,结合上面的问题的解决,谈谈你的体会。
【应用拓展】
基础演练
1、一轮船以每小时20海里的速度沿正东方向航行,上午8时,该船在A测得某灯塔位于它的北偏东30°的B处(如图).上午九时行至C处,测得灯塔恰好在它的正北方向,此时它与灯塔的距离是 海里(结果保留根号).
2、如图,灯塔A周围1000米水域内有礁石,一舰艇由西向东航行,在O处测得灯塔A在北偏东74°方向线上,这时O、A相距4200米,如果不改变航向,此舰艇是否有触礁的危险?(以下数据供考生选用:cos74°=0.2756,sin74°=0.9613,cot74°=0.2867,tan74°=3.487)
能力升级
3、如图1-15,一只船以30海/小时的速度向西南方向航行,上午9时在M处发现船的南偏西30°方向有一灯塔P,上午11时到达这座灯塔的正西处N,这时船与灯塔的距离是 。30-10
4、一艘渔船在A处观测到东北方向有一小岛C,已知小岛C周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘渔船是否有进入养殖场的危险?
拓展提高
5、台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30°方向往C移动,且台风中心风力不变.若城市所受风力达到或超过四级,则称为受台风影响.
⑴该城市是否会受到这次台风的影响?请说明理由?
⑵若会受到台风的影响,那么台风影响该城市的持续时间有多长?
⑶该城市受到台风影响的最大风力为几级?
第9课时 课题:回顾与思考(1)
教学目标
通过复习,使学生系统地掌握本章知识。由于本章的概念比较多,需要记忆的知识也比较多,因此,课前应该让学生先看看书本,以求得较高的复习效率。在系统复习知识的同时,使学生能够灵活运用知识解决问题。
教学过程
一、知识回顾
1.应用相似测量物体的高度(1)
如图(一),利用光线的平行和物体在地面的投影和物体构成的两个直角三角形相似,从而求得物体的高度。
(2)如图(二),我们可以利用测角仪测出∠ECB的度数,用皮尺量出CE的长度,而后按一定的比例尺(例如1:500)画出图形,进而求出物体的高度。
2.锐角三角函数。(如图三)
(1)定义:sinA=,cosA=,tanA=,cota=。
(2)若∠A是锐角,则0<sinA<l,0<cosA<1,tinA×cotA=1,sin2A+cos2A=1,你知道这是为什么吗
(3)特殊角的三角函数值。
a sina cosa tana cota
30°
45° 1 1
60°
同学们在记忆这些三角函数值时,一方面能由角度求出它的各个三角函数值,另一方面,要能由三角函数值求出相应的角度。
(4)熟练应用计算器求出锐角三角函数值。
(5)正弦、正切值是随着角度的增大而增大,余弦、余切值是随着角度的增大而减少.
(6)一个锐角的正弦值等于它余角的余弦值,一个锐角的余弦值等于它余角的正弦值。正切、余切也一样。
即若a是锐角,a的余角为(90°-a)则
sin(90°-a)=cosa, cos(90°-a)=sina,
tan(90°-a)=cota, cot(90°-a)=tana,
二、例题讲解
例1.Rt△ABC中,∠C=90°,∠B=60°,两直角边的和为14,求这个直角三角形的面积。
例2.如图,AC⊥BC,cos∠ADC=,∠B=30°AD=10,求 BD的长。
三、练习
1.Rt△ABC中,∠C=90°,∠A=30°,∠A、∠B、∠C所对的边为a、b、c,则a:b:c=( )
A1:2:3 B.1: : C.1: :2 D.1:2:
2.在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm。求:(1)△ABC的面积; (2)斜边的长;(3)高CD.
3.Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=,求∠B的度数以及边BC、AB的长。
四、小结
本节课我们系统地复习了三角函数的定义、勾股定理等内容,同学们在理解、记忆知识的基础上,应做到灵活地运用这些知识解决问题,这就要求同学们在课后要做一定量的练习才能达到。
五、作业
见作业纸
第10课时课题:课题:回顾与思考(2)
教学目标
使学生掌握直角三角形的边与边,角与角,边与角的关系,能应用这些关系解决相关的问题,进一步培养学生应用知识解决问题的能力。
教学过程
一、知识回顾解直角三角形应用的知识。
1.边与边关系:a2+b2=c2
2.角与角关系:∠A+∠B=90°
3.边与角关系,sinA=,cosA=,tanA=,cota=
4.仰角、俯角的定义:如右图,从下往上看,视线与水平线的夹角叫做仰角,从上往下看,视线与水平线的夹角叫做俯角。右图中的∠1就是仰角,∠2就是俯角。
坡角、坡度的定义:坡面的铅垂高度与水平宽度的比叫做坡度 (或坡比),读作i,即i=,坡度通常用1:m的形式,例如上图的1:2的形式。坡面与水平面的夹角叫做坡角。从三角函数的概念可以知道,坡度与坡角的关系是i=tanB。显然,坡度越大,坡角越大,坡面就越陡。
二、例题讲解
例1.北部湾海面上,一艘解放军军舰正在基地A的正东方向且距离A地40海里的B处训练。突然接到基地命令,要该舰前往C岛,接送一名病危的渔民到基地医院救治。已知C岛在A的北偏东方向60°,且在B的北偏西45°方向,军舰从B处出发,平均每小时行驶20海里,需要多少时间才能把患病渔民送到基地医院 (精确到0.1小时)
例2.如图,城市规划期间,要拆除一电线杆AB,已知距电线杆水平距离14米的D处有一大坝,背水坡的坡度i=2:1,坝高CF为2米,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2米的人行道.请问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上 请说明理由(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)。
三、练习
1.甲、乙两船同时从港口O出发,甲船以16.1海里/小时的速度向东偏南32°方向航行,乙船向西偏南58°方向航行,航行了两个小时,甲船到达A处并观测到B处的乙船恰好在其正西方向,求乙船的速度(精确到0.1海里/小时)
2.如图,MN表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有一点A,以A为圆心、500m为半径的圆形区域为居民区。取MN上的另一点B,测得BA的方向为南偏东75°。已知MB=400m,通过计算回答,如果不改变方向,输水管道是否会穿过居民区。
四、小结
这节课进一步学习了应用解直角三角形的知识解决实际问题,在解决这样的问题时,一方面,根据题意能够画出图形,另一方面,要把问题归结到直角三角形中来解决。
五、能力升级
1、如图,美国侦察机B飞抵我国近海搞侦察活动,我战斗机A奋斗拦截,地面雷达C测得:当两机都处在雷达的正东方向,且在同一高度时,它们的仰角分别为∠DCA=160,∠DCB=150,它们与雷达的距离分别为AC=80千米,BC=81千米,求此时两机距离是多少千米?(精确到0.01千米)?(sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)
2、如图所示,在湖边高出水面50米的山顶A处,望见一架直升飞机停留在湖面上空某处,观察到飞机底部标志P处的仰角为45°,又观察其在湖中之像的俯角为60°,试求飞机离开湖面的高度h。(观察时湖面处于平静状态)
六、作业
见作业纸
第11课时 课题:解直角三角形复习教学案
一、知识点:
1.知识结构表
2.三角函数的定义: sin A=, cos A=,
tan A=, cot A=
0<sin A<1,0<cos A<1 tan A cot A=1
3.特殊角的三角函数值:
二、考点:
【1】、运用勾股定理已知两边求第三边。
1.在Rt△ABC中,∠C=90°,∠A=60°,,则斜边c=___
2.如图,有两棵树,一棵高8米,另一棵高 2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.
3.已知Rt⊿ABC的两边为3,4求第三边。
4.等边⊿ABC的边长为4,求三角形的面积。
5.平静的湖面上,有一枝红莲,高出水面1米,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,则这里的水深是多少米?
【2】锐角三角函数的意义
已知,且a为锐角,则m的取值范围是___
已知为锐角,若,=__
若,则=_______
3.如图⊿ABC中,BD,CE是三角形的高,试写出图中所有等于 sinA的比值。
4.如图,正方形ABCD中,N是CD的中点,BM=3CM,求∠MAN的正切值。
【3】特殊角的三角函数值
1.在Rt△ABC,∠C=900,,则=______
2.如图,在△ABC中,∠B=60°,AD⊥BC,AD= AC=, 则AB=__ ,BC=__。
3.在△ABC中∠C=900,,,则等于【 】
A. B. 1 C.2 D.3
4.在平面直角坐标系内P点的坐标(cos300,tg450),则P点关于x轴对称点P/的坐标为:【 】
A. B. C. D.
5.计算
【4】运用直角三角形的三边关系及边角关系解直角三角形。
1.在平行四边形ABCD中,已知∠B=60°,AB=4cm,BC=6cm,则平行四边形ABCD的面积是_____cm2
2.在△ABC中,∠C=900,则下列关系式中不成立的是:【 】
A. B. C. D.
3.为测楼房BC的高,在距楼房30米的A处,测得楼顶B的仰角为α,则楼房BC的高为【 】
A.米 B.米
C.米 D.米
4.在Rt△ABC中,∠A=60°,a=3,解这个直角三角形
5.如图,∠POQ=90°,边长为2cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC=30°,分别求点A、D到OP的距离.
6.如图,在△ABC,∠C=900,D是BC的中点,∠ADC=600,AC=,求:△ABD的周长
【5】将实际问题转化为解直角三角形问题。
1.如图,已知两座高度相等的建筑物AB、CD的水平距离BC=60米,在建筑物CD上有一铁塔PD,在塔顶P处观察建筑物的底部B和顶部A,分别测行俯角,求建筑物AB的高。(计算过程和结果一律不取近似值)
2.如图,一渔船以32千米/时的速度向正北航行,在A处看到灯塔S在渔船的北偏东300,半小时后航行到B处看到灯塔S在船的北偏东750,若渔船继续向正北航行到C处时,灯塔S和船的距离最短,求灯塔S与C的距离。(计算过程和结果一律不取近似值)
3.四年一度的国际数学家大会于2002年8月20日在北京召开.大会会标如图甲.它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5.求中间小正方形的面积.
(2)现有一张长为6.5cm、宽为2cm的纸片,如图,请你将它分割成6块,再拼合成一个正方形.(要求:先在图乙中画出分割线,再画出拼成的正方形并标明相应数据)
A
b
C
a
B
A
C1
C2A
C3
B1
B2
B3
B
C
A
1
B
A
C
3
5
A
2
C
1
B
A
BA
CBA
DCBA
ECBA
1.2m
2.5m
1m
(单位:米)
20m
13m
三角函数值
三角函数
θ
A
C
B
D
a
b
c
d
B
A
E
C
D
A
B
C
D
东
北
60°
45°
O
A
B
A
M
60°
O
A
C
B
A
B
D
C
A
B
C
O
D
E
A
B
M
C
N
D