微课名称
圆柱和圆锥综合练习
教师姓名
教师单位
知识点来源
□学科:数学 □年级:六年级下册 □教材版本:人教版
□所属章节:第三单元
设计思路
本节课是圆柱和圆锥的复习课,学生通过自己梳理圆柱和圆锥的相关知识,在大脑中形成清晰的知识结构体系,对于相关知识典型练习题,分类呈现出来,掌握解题方法。
学需求分析
包括适用对象分析:六年级的学生,思维正在由形象思维向抽象思维转变,本单元立体图形的学习利于发展学生的空间观念。
学习内容分析:圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
教学目标分析:充分利用直观学具,让学生观察、动手、动脑,丰富其表象,训练形象思维,而本节的复习课培养学生自主获取知识的能力和整理、分析、综合概括的能力。
教学设计
内 容
教学目的
引导学生通过回忆、整理、拓展等实践活动,掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
教学重点难点
重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
难点:通过对知识进行整理,提高学生自主获取知识与概括知识的能力。
教学过程
(一)梳理知识,构建体系。
1.让同学们自主整理本章知识。
2.小组内交流,补充完善。
3.小组展示,讨论、完善,形成基本的知识网络。
〔教师点拨:〕
(1)圆柱的侧面怎样剪展开图是平行四边形?
(2)圆柱展开图与圆柱有什么关系?
(3)说出圆柱体积公式的推导过程。(迁移运用圆面积推导的转化思想)
(4)回忆说出圆锥体积公式推导的实验过程。
(二)创设问题情境,在解决实际问题中复习应用所学知识。
1.屏幕呈现:一个圆柱体木料,底面直径20厘米,高30厘米。
(1)根据已知条件,结合已学圆柱、圆锥的知识,提出问题,看谁的更有创意?(2)学生思考后提出问题。
〔预设问题:〕
木料的侧面积是多少?表面积是多少?
木料的体积是多少?
把木料削成一个最大的圆锥,它的体积是多少?
……
2.“刷”出表面积有关的知识。
〔教师引导:〕针对这一圆木,生活中在什么情况下需要求表面积?
〔预设回答:〕给圆木涂油漆求涂漆面积的时候需要用表面积的知识。
〔教师追问:〕给圆木涂油漆有几种情况?都发生在什么条件下?
〔预设回答:〕如果是柱子时,只刷侧面。
如果是个木桩,只涂一个侧面和一个上面。
如果是个圆木料,可涂整个表面。
3.“切”出新的表面,求增加的表面积。
〔教师引导:〕有同学说可以把圆木切开,求表面积增加了多少平方厘米,那同学们说说可以怎样来切?
〔预设回答:〕
可以横切,分两段切一刀,增加两个底面大小的面,分三段切两刀,增加4个底面大小的面,以此类推。
还可以沿直径纵切,增加两个长方形的面,长和圆柱的高相等,宽和直径相等。
〔课件演示:〕横切和纵切
4.“削”出圆锥,讨论圆柱与对应圆锥的关系。
〔教师引导:〕除了对圆木“涂”“切”以外,有同学说还可以“削”成一个最大的圆锥。那怎样“削”才算是最大呢?你能用四句话说出它们之间的关系吗?
〔预设回答:〕等底等高的圆柱和圆锥:圆柱体积是圆锥体积的3倍,圆锥体积是圆柱体积的三分之一,圆柱体积比圆锥体积多2倍,圆锥体积比圆柱体积少三分之二。
〔教师引导:〕如果圆柱和圆锥等底等积,那你能说出它们之间的关系吗?
〔预设回答:〕圆柱和圆锥等底等积:圆柱高是圆锥高的三分之一,圆锥高是圆柱高的3倍。
〔教师引导:〕如果圆柱和圆锥等高等积,那你能说出它们之间的关系吗?
〔预设回答:〕圆柱和圆锥等高等积:圆柱底是圆锥底的三分之一,圆锥底是圆柱底的3倍。
5.“挖”出容积。
〔教师引导:〕我们还可以对圆木如何加工呢?
〔预设回答:〕可以挖成一个木桶,求求它的容积,内外涂清漆,求涂漆的面积是多少。
〔教师追问:〕容积和体积有何联系和区别?
〔设计意图:〕“挖”出容积,将容积和体积加以何联系和区别,木桶的内外都涂上清漆,与前面的涂漆问题加以联系和区分,学生的空间观念得以进一步的发展。
(三)联系实际,解决实际问题。
学校要修建一个圆形水池,池内安装喷泉,水池直径5米,深1.5米。你能提出哪些数学问题?
〔预设问题:〕
水池的占地面积是多少平方米?
挖这个水池要挖出多少立方米的土?
如果给水池贴瓷砖,贴瓷砖的面积是多少?
水池装满水,能装多少立方米?
〔教师提问:〕
如果给水池接一圈水管,并4米安装一个喷头,需要按几个?
池内如果注入1.2米深的水,那将有多少立方米的水?
〔教师追问:〕每一个问题都涉及哪些方面的知识?
〔设计意图:〕一个水池问题,让同学们再一次将所学的知识应用到问题解决中,可以充分培养学生灵活运用知识解决实际问题的能力。
应用说明
突破重难点