高中物理选择性必修第二册第一章安培力与洛伦兹力
第4节 质谱仪与回旋加速器
一、单项选择题
1.如图所示,速度选择器中磁感应强度大小为和电场强度大小为,两者相互垂直.一束带电粒子以一定的初速度沿直线通过速度选择器后从狭缝进入另一磁感应强度大小为的匀强磁场,最后打在平板的上,不计粒子重力,则( )
A.速度选择器中的磁场方向垂直纸面向里
B.通过狭缝的带电粒子速度为
C.打在处的粒子在磁场中运动的时间都相同
D.带电粒子打在平板上的位置越靠近,粒子的比荷越大
2.质谱仪是测带电粒子质量和分析同位素的一种仪器,它的工作原理是带电粒子(不计重力)经同一电场加速后垂直进入同一匀强磁场做圆周运动,然后利用相关规律计算出带电粒子的质量。其工作原理如图所示,虚线为某粒子的运动轨迹,由图可知( )
A.此粒子带负电
B.下极板比上极板电势高
C.若只增大加速电压,则半径变大
D.若只增大入射粒子的质量,则半径变小
3.回旋加速器是加速带电粒子的装置,其核心部分是与电极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,下列说法正确的是( )
A.增大电场的加速电压,其他保持不变 B.减少磁场的磁感应强度,其他保持不变
C.减小狭缝间的距离,其他保持不变 D.增大D形金属盒的半径,其他保持不变
4.质谱仪是一种利用质谱分析测量离子比荷的分析仪器,如图是一种质谱仪的示意图,它是由加速电场、静电分析器和磁分析器组成。已知静电分析器通道中心线的半径为R,通道内均匀辐射电场在中心线处的电场强度大小为E,磁分析器有范围足够大的有界匀强磁场,磁感应强度大小为B,方向垂直纸面向外。现有一质量为m、电荷量为q的带电粒子由静止开始经加速电场加速后,沿中心线通过静电分析器,由P点垂直边界进入磁分析器,最终打到胶片上的Q点,不计粒子重力,下列说法中正确的是( )
A.经分析,粒子带正电,且极板M低于极板N电势
B.不同种类的带电粒子通过静电分析器的时间都相同
C.加速电场的电压
D.带电粒子在磁分析器中运动的直径
5.如图所示,回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形盒,两盒间构成一狭缝,两D形盒处于垂直于盒面的匀强磁场中.下列有关回旋加速器的描述正确的是( )
A.粒子由加速器的边缘进入加速器
B.粒子由加速器的中心附近进入加速器
C.粒子在狭缝和D形盒中运动时都能获得加速
D.交流电源的周期必须等于粒子在D形盒中运动周期的2倍
6.如图所示为质谱仪的原理图,一束粒子流由左端平行于P1、P2射入,粒子沿直线通过速度选择器,已知速度选择器的电场强度为E,磁感应强度为B1.粒子由狭缝S0进入匀强磁场B2后分为三束,它们的轨道半径关系为,不计重力及粒子间的相互作用力,则下列说法中正确的是( )
A.P1极板带负电
B.能通过狭缝S0的带电粒子的速率等于
C.三束粒子在磁场B2中运动的时间相等
D.粒子1的比荷大于粒子2的比荷
7.如图是质谱仪的工作原理示意图,它是分析同位素的一种仪器,其工作原理是带电粒子(不计重力)经同一电场加速后,垂直进入同一匀强磁场做圆周运动,挡板D上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A 2。若( )
A.只增大粒子的质量,则粒子经过狭缝P的速度变大
B.只增大加速电压U,则粒子经过狭缝P的速度变大
C.只增大粒子的比荷,则粒子在磁场中的轨道半径变大
D.只增大磁感应强度,则粒子在磁场中的轨道半径变大
8.如图所示为一种获得高能粒子的装置一一环形加速器,环形区域内存在垂直纸面向外的可变匀强磁场,质量为m、电荷量为+q的粒子在环中做半径为R的圆周运动,A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A板时,A板电势升高为+U,B板电势仍保持为零,设粒子的初速度为零,在两极板间的电场中加速,每当粒子离开电场区域时,A板电势又降为零,粒子在电场多次加速下动能不断增大,而在环形区域内绕中心运动的半径不变(设极板间距远小于R),粒子重力不计,下列关于环形加速器的说法中正确的是( )
A.加速器对带正电粒子顺时针加速,对带负电粒子加速需要升高B板电势
B.电势U越高,粒子最终的速度就越大
C.粒子第n次绕行一圈所需的时间tn与下一次所需时间tn+1的关系为
D.第n次绕行的磁感应强度大小Bn与下一次磁感应强度大小Bn+1之比为
9.质谱仪是测量带电粒子的比荷和分析同位素的重要工具.如图所示,带电粒子从容器下方的小孔飘入电势差为的加速电场,其初速度几乎为零,然后经过沿着与磁场垂直的方向进入磁感应强度为的匀强磁场中,最后打到照相底片上.现有某种元素的三种同位素的原子核由容器进入质谱仪,最后分别打在底片、、三个位置.不计粒子重力.则打在处的粒子( )
A.质量最小 B.比荷最小 C.动能最小 D.动量最小
10.美国物理学家劳伦斯于1932年发明的回旋加速器,应用带电粒子在磁场中做圆周运动的特点,能使粒子在较小的空间范围内经过电场的多次加速获得较大的能量,使人类在获得较高能量带电粒子方面前进了一大步.图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场场强恒定,且被限制在A、C板间,带电粒子从P0处以速度v0沿电场线方向射入加速电场,经加速后再进入D型盒中的匀强磁场做匀速圆周运动.对于这种改进后的回旋加速器,下列说法正确的是( )
A.带电粒子每运动一周被加速两次
B.带电粒子每运动一周P1P2=P2P3
C.加速粒子的最大速度与D形盒的尺寸有关
D.加速电场方向需要做周期性的变化
二、多项选择题
11.1930年劳伦斯制成世界上第一台回旋加速器,其原理如图所示.这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是( )
A.粒子从电场中获得能量
B.粒子获得最大速度与回旋加速器半径有关
C.粒子获得最大速度与回旋加速器内的电场有关
D.回旋加速器中的电场和磁场交替对带电粒子做功
12.如图所示,一束重力可忽略不计的带电粒子以一定的初速度沿直线通过由相互正交的匀强磁场B和匀强电场E组成的速度选择器,然后粒子通过平板S上的狭缝P进入另一匀强磁场,最终打在上。下列表述正确的是( )
A.粒子带正电
B.所有打在上的粒子,在磁场中运动时间都相同
C.能通过狭缝P的带电粒子的速率等于
D.粒子打在上的位置越靠近P,粒子的比荷越大
13.质谱仪是一种测定带电粒子质量或分析同位素的重要设备,它的构造原理如图示.离子源S产生的各种不同正离子束(速度可视为零),经MN间的加速电压U加速后从小孔S1垂直于磁感线进入匀强磁场,运转半周后到达照相底片上的P点.设P到S1的距离为x,则( )
A.若离子束是同位素,则越大对应的离子质量越小
B.若离子束是同位素,则越大对应的离子质量越大
C.只要相同,对应的离子质量一定相同
D.只要相同,对应的离子的比荷一定相等
14.如图所示,回旋加速器D形盒的半径为R,所加磁场的磁感应强度为B,用来加速质量为m、电荷量为q的质子(),质子从下盒的质子源由静止出发,回旋加速后,由A孔射出,则下列说法正确的是( )
A.加速器可以对质子进行无限加速
B.回旋加速器所加交变电压的频率为
C.只增大交变电压U,则质子在加速器中获得的最大能量将变大
D.回旋加速器加速完质子在不改变所加交变电压和磁场情况下,不可以直接对氦核()进行加速
15.如图所示为一种获得高能粒子的装置,由光滑绝缘材料围成的环形区域内存在垂直纸面向外、磁感应强度大小为B的均匀磁场(环形区域的宽度非常小).质量为m、电荷量为+q的粒子可在环中做半径为R的圆周运动.A、B为两块中心开有小孔的距离很近的极板,原来电势均为零,每当带电粒子经过A板准备进入AB之间时,A板电势升高为+U,B板电势仍保持为零,粒子在两板间的电场中得到加速.每当粒子离开B板时,A板电势又降为零.粒子在电场中一次次加速下动能不断增大,而在环形磁场中绕行半径R不变.(设极板间距远小于R)下列说法正确的是( )
A.粒子从A板小孔处由静止开始在电场力作用下加速,绕行N圈后回到A板时获得的总动能为NqU
B.粒子在绕行的整个过程中,每一圈的运动时间为
C.粒子获得的最大速度与加速次数无关,由R决定.
D.粒子绕行第N圈时所受向心力为
三、解答题
16.质谱仪是测量带电粒子的质量和分析同位素的重要工具。如图所示为一种质谱仪的原理示意图。带电粒子从容器A下方的小孔飘入电势差为U的加速电场,其初速度几乎为零,然后沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上。忽略重力的影响。
(1)若电荷量为+q、质量为m的粒子,由容器A进入质谱仪,最后打在底片上某处,求粒子在磁场中做匀速圆周运动的半径R。
(2)若有某种元素的两种同位素的原子核由容器A进入质谱仪,在磁场中运动轨迹的直径之比为d1:d2,求它们的质量之比。
(3)若将图中的匀强磁场替换为水平向左的匀强电场,(2)中两种同位素的原子核由容器A进入质谱仪,是否会打在底片上? 是否会被分离成两股粒子束? 请通过计算说明你的观点。
17.图为质谱仪的结构示意,由加速电场、速度选择器、偏转磁场三部分组成。一个质量为m,电荷量为q的粒子从加速电场的正极板附近由静止释放,沿直线运动,经速度选择器后由P点垂直射入磁感应强度为B0匀强磁场,最后垂直打在位于A1A2间的照相底片上的P'点。已知PP'间的距离为L,速度选择器中的匀强电场的场强大小为E,不计粒子重力。求:
(1)速度选择器中的磁场B的方向和大小;
(2)加速电场的电压U。
18.回旋加速器是利用磁场和电场共同作用对带电粒子进行加速的仪器。现在有一个研究小组对回旋加速器进行研究。研究小组成员分工合作,测量了真空中的D形盒的半径为R,磁感应强度方向垂直加速器向里,大小为B1,要加速粒子的电荷量为q,质量为m,电场的电压大小为U。帮助小组成员完成下列计算:
(1)本回旋加速器能将电荷加速到的最大速度是?
(2)求要达到最大速度,粒子要经过多少次电场加速?
(3)研究小组成员根据磁场中电荷偏转的规律设计了如图乙的引出装置。在原有回旋加速器外面加装一个圆环,在这个圆环区内加垂直加速器向里的磁场B2,让带电粒子在加速器边缘恰好能偏转至圆环区域外边缘加以引导。求圆环区域所加磁场的磁感应强度B2?
19.回旋加速器原理如图所示,D1和D2是两个中空的半圆形金属盒,置于与盒面垂直的匀强磁场中,它们接在交流电源上,位于D1圆心处的离子源A能不断产生正离子,它们在两盒之间被电场加速,当正离子被加速到最大动能Ek后,再设法将其引出。已知正离子的电荷量为q,质量为m,加速时电极间电压大小恒为U,磁场的磁感应强度为B,D型盒的半径为R,狭缝之间的距离为d。设正离子从离子源出发时的初速度为零。
(1)试计算上述正离子被第一次加速后进入D2中运动的轨道半径;
(2)计算正离子飞出时的最大动能;
(3)设该正离子在电场中的加速次数与回旋半周的次数相同,试证明当R>>d时,正离子在电场中加速的总时间相对于在D形盒中回旋的时间可忽略不计(正离子在电场中运动时,不考虑磁场的影响)。
参考答案
一、单项选择题
1 2 3 4 5 6 7 8 9 10
D C D C B D B D B C
二、多项选择题
11 12 13 14 15
AB ACD BD BD AD
三、解答题
16.(1)(2):(3) 两种同位素的原子核不会打在底片上,也不会被分离成两股粒子束
【解析】
(1)粒子在电场中加速,根据动能定理,有qU=mv2
粒子在磁场中做匀速圆周运动时,洛伦兹力提供向心力,有qvB=m
解得
(2)由(1)中结论可得
(3)粒子在加速电场中,根据动能定理有qU=mv2
粒子在偏转电场中,垂直电场方向做匀速直线运动x=vt
沿电场方向做匀加速直线运动
解得
因此两种同位素的原子核不会打在底片上,也不会被分离成两股粒子束。
17.(1),方向为垂直纸面向外;(2)
【解析】
(1)粒子由P点垂直射入磁感应强度为B0匀强磁场,在洛伦兹力作用下做匀速圆周运动,有
(R为轨道半径)
由几何关系L=2R
解得
粒子经速度选择器出来,满足
解得
由左手定则,磁场B的方向为垂直纸面向外。
(2)粒子在电场中由静止加速
得
18.(1) ;(2);(3)
【解析】
(1)粒子在磁场中运动时满足:
当被加速的速度达到最大时满足:r=R
则解得
(2)粒子在电场中被加速,每次经过电场时得到的能量为Uq,则:
解得
(3)由左手定则可知,粒子带负电;要想使得带电粒子在加速器边缘恰好能偏转至圆环区域外边缘,则粒子运动的轨道半径 ;
由
解得
19.(1);(2);(3)见解析
【解析】
(1)设质子第1次经过狭缝被加速后的速度为v1,根据动能定理可得
解得
洛伦兹力充当向心力,则有
解得
(2)离子射出时加速器时
解得
离子动能为
(3)在电场中运动可以看做连续的匀加速直线运动,设离子射出时速度为v。
根据平均速度公式可得在电场中运动时间为
离子在D形盒中运动的周期为
粒子在磁场中回旋的时间为
有=
当d<