七年级数学5.1.2垂线(1)

文档属性

名称 七年级数学5.1.2垂线(1)
格式 zip
文件大小 526.6KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2012-02-27 14:40:40

图片预览

文档简介

(共23张PPT)
如右图,
(1)∠AOC的对顶角是哪个角?这两个角的关系怎样?
(2)∠AOC的邻补角有几个?是哪几个角?
在相交线的模型中,固定木条a,转动木条b,
当α =90°时,a与b垂直.
当b的位置变化时,a、b所成的角α也会发生变化.
当α ≠90°时,a与b不垂直,叫斜交.
两条直线相交
斜交
垂直
垂直是相交的特殊情况

α
a
b
b
b
b
b

α
1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。
一、垂直的定义
从垂直的定义可知,
判断两条直线互相垂直的关键:
只要找到两条直线相交时四个交角中一个角是直角。
垂直的记法、读法
直线AB、CD互相垂直,记作“AB⊥CD”或
“CD⊥AB”,读作“AB垂直于CD”,如果垂足为O,
记作“AB⊥CD,垂足为O”(如图).
窗户
墙砖
方格本的横线和竖线
铅垂线和水平线
A
B
C
D
O
书写形式:
如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O。
∵∠AOD=90°(已知)
∴AB⊥CD(垂直的定义)
书写形式:
反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°。
2.垂直的书写形式:
∵ AB⊥CD (已知)
∴ ∠AOD=90° (垂直的定义)
应用垂直的定义:
∠AOC=∠BOC=∠BOD=90°
例1、如图,已知直线AB、CD都经过O点,OE为射线,若∠1=35° ∠2=55°,则OE与AB的位置关系是 。
解:
∵∠1=35°,∠2=55°(已知)
垂直
∴ ∠AOE=180°-∠1-∠2
= 180°-35°-55°
=90°
∴OE⊥AB (垂直的定义)
C
D
A
B
O
E
1
2
例2:如图 ,已知AB. CD相交于O, OE⊥CD
于O,∠AOC=36°,则∠BOE= 。
(A)36° (B) 64°
(C)144° (D) 54°
A
B
O
C
D
E
54°
二、垂线的画法
问题:
怎么样画垂线?
1.垂线的画法:
问题:
这样画l的垂线可以画几条?
1放、
2靠、
3画线、
l
O
如图,已知直线 l,作l的垂线。
工具:直尺、三角板
A
无数条
1.垂线的画法:
l
A
如图,已知直线 l 和l上的一点A ,作l的垂线.
B
4画线:沿着三角板的另一直角边画出垂线.
1放:放直尺,直尺的一边要与已知直线重合;
3移:移动三角板到已知点;
2靠:靠三角板,把三角板的一直角边靠在直尺上;
则所画直线AB是过点A的直线l的垂线.
1.垂线的画法:
l
A
如图,已知直线 l 和l外的一点A ,作l的垂线.
B
4画线:沿着三角板的另一直角边画出垂线.
1放:放直尺,直尺的一边要与已知直线重合;
3移:移动三角板到已知点;
2靠:靠三角板,把三角板的一直角边靠在直尺上;
则所画直线AB是过点A的直线l的垂线.
请同学们画一下
垂线的性质1:
过一点有且只有一条直线与已知直线垂直.
垂线的性质
线段、射线的垂线应怎么画呢?
A
B
P
Q
O
A
注意:画线段(或射线)的垂线时,有时要将线段延长(或将射线反向延长)后再画垂线.即画线段或射线所在直线的垂线.
课堂练习
1.选择题
过点 向线段 所在直线引垂线,正确的是( ).
A B C D
C
看谁做得快
1.若直线m、n相交于点O,
∠1=90°,则__________。
2.若直线AB、CD相交于点O,
且AB⊥CD,那么∠BOD=____。
3.如图,BO⊥AO,∠BOC
与∠BOA的度数之比为1:5,
那么∠COA=_____,
∠BOC的补角为______度。
O
m
n
1
B
C
A
O
m⊥n
90°
72°
162
练习:
如图,直线AB、CD相交于点O,OE⊥AB,∠1=125°,
求∠COE的度数.
A
C
E
B
D
O
1

练习:
在图中,过点A分别作BD和DE的垂线.
D
A
B
E
D
A
B
E
D
A
B
E
N
M
结论:直线AM,AN为所求垂线。
变式:过A点作线段AN⊥DB,垂足为N
两条直线相交
一般情况
垂线
对顶角:相等
邻补角:互补
垂线的存在性和唯一性
特殊情况
相交成直角