8.4 三元一次方程组的解法 课件(共20张PPT)

文档属性

名称 8.4 三元一次方程组的解法 课件(共20张PPT)
格式 pptx
文件大小 1.6MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2021-04-21 06:29:09

图片预览

文档简介

2021年春人教版七年级(下)数学
第八章 二元一次方程组
理解三元一次方程组的概念.
能解简单的三元一次方程组.
学习目标
1.解二元一次方程组有哪几种方法?
2.解二元一次方程组的基本思路是什么?
二元一次方程组
代入
加减
消元
一元一次方程
化二元为一元
化归转化思想
代入消元法和加减消元法
消元法
温故知新
这样的方程组我们叫它什么呢,该怎样解呢?
小明手头有12张面额分别是1元、2元和5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元和5元的纸币各多少张?
解:设1元、2元、5元的纸币分别为x 张、y 张、z 张.
新课导入
特点: (1)方程组中含有三个未知数;
(2)每个方程中含有未知数的项的次数都为1;
(3)方程组中一共有三个方程.
含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
探究新知
下列方程组不是三元一次方程组的是 ( )
A.
B.
C.
D.
D
【点睛】组成三元一次方程组的三个一次方程中,不一定要求每一个一次方程都含有三个未知数.
针对练习
类似二元一次方程组的解,三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.
怎样解三元一次方程组呢?
能不能像以前一样“消元”,把“三元”化成“二元”呢?
?
?
?
探究新知
?
?
?
解:将③代入①、②,得

得出:
代入①得出x=8.
由此可得出方程组的解为:
方法一:用代入消元法解:
?
?
?
类似二元一次方程组的“消元”,把“三元”化成“二元”.
方法二:用加减消元法解:
解:①×5-②,得4x+3y=38 ④
③与④组成方程组
解这个方程组,得
代入①式得z=2,
由此可得出方程组的解为:
解三元一次方程组的基本思路是:通过“代入”或“加减”进行 ,
把 转化为 ,使解三元一次方程组转化为解 ,
进而再转化为解 .
三元一次方程组
二元一次方程组
一元一次方程
消元
消元
消元
“三元”
“二元”
二元一次方程组
一元一次方程
例1:解方程组
解:由方程②得 x=y+1 ④
把④分别代入①③得
2y+z=22 ⑤
3y-z=18 ⑥
解由⑤⑥组成的二元一次方程组,得
y=8,z=6
把y=8代入④,得x=9
所以原方程的解是
x=9
y=8
z=6
?
?
?
例题讲解
例2:在等式 y=ax2+bx+c中,当x=-1时,y=0;当x=2时,y=3;当x=5时,y=60. 求a,b,c的值.
解:根据题意,得三元一次方程组
a-b+c= 0, ①
4a+2b+c=3, ②
25a+5b+c=60. ③
②-①, 得 a+b=1 ④
③-①,得 4a+b=10 ⑤
④与⑤组成二元一次方程组
a+b=1,
4a+b=10.
a=3,
b=-2.
解这个方程组,得
把 代入①,得
a=3,
b=-2
c=-5,
a=3,
b=-2,
c=-5.
因此
例题讲解
例3:幼儿营养标准中要求每一个幼儿每天所需的营养量中应包含35单位的铁、70单位的钙和35单位的维生素.现有一批营养师根据上面的标准给幼儿园小朋友们配餐,其中包含A、B、C三种食物,下表给出的是每份(50g)食物A、B、C分别所含的铁、钙和维生素的量(单位)
食物


维生素
A
5
20
5
B
5
10
15
C
10
10
5
例题讲解
(1)如果设食谱中A、B、C三种食物各为x、y、z份,请列出方程组,使得A、B、C三种食物中所含的营养量刚好满足幼儿营养标准中的要求.
(2)解该三元一次方程组,求出满足要求的A、B、C的份数.
解:(1)由该食谱中包含35单位的铁、70单位的钙和35单位的维生素,得方程组
?
?
?
(2)?-?×4,?-?,得

?

⑤+④,得

?

通过回代,得 z=2,y=1,x=2.
答:该食谱中包含A种食物2份,B种食物1份,C种食物2份.
1.解方程组 ,则x=_____,y=______,z=_______.
x+y-z=11,
y+z-x=5,
z+x-y=1.



【解析】通过观察未知数的系数,可采取① +②求出y, ②+ ③求出z,最后再将y与z的值代入任何一个方程求出x即可.
6
8
3
课堂练习
2.若x+2y+3z=10,4x+3y+2z=15,则x+y+z的值为( )
A.2 B.3 C.4 D.5
解析: 通过观察未知数的系数,可采取两个方程相加得,5x+5y+5z=25,所以x+y+z=5.
D
3.若|a-b-1|+(b-2a+c)2+|2c-b|=0,求a,b,c的值.
解:因为三个非负数的和等于0,所以每个非负数都为0.
可得方程组
解得
4.一个三位数,十位上的数字是个位上的数字的 ,百位上的数字与十位上的数字之和比个位上的数字大1.将百位与个位上的数字对调后得到的新三位数比原三位数大495,求原三位数.
解:设原三位数百位、十位、个位上的数字分别为x、y、z.由题意,得
解得
答:原三位数是368.
解三元一次方程组的基本思路是:通过“代入”或“加减”进行 ,
把 转化为 ,使解三元一次方程组转化为解 ,
进而再转化为解 .
三元一次方程组
二元一次方程组
一元一次方程
消元
消元
消元
“三元”
“二元”
二元一次方程组
一元一次方程
课堂小结