3.2复数的运算

文档属性

名称 3.2复数的运算
格式 zip
文件大小 76.3KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2012-02-28 11:07:35

图片预览

文档简介

呼和浩特市第十四中学教案
课题 3.2复数的运算 授课日期 年 月 日
第 课时
三维目标(体现高考考点的落实) 知识与技能 知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算
过程与方法 1.理解并掌握复数的除法运算实质是分母实数化类问题2.如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d,只有当两个复数不全是实数时才不能比较大小
情感、态度、价值观 复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 
教学重点 复数代数形式的除法运算。 
教学难点 对复数除法法则的运用 
授课类型 新授课 
教学设计(包括以下内容:①预习 ②设置问题、回答问题 ③合作探究 ④课堂训练)
共案设计(经集体讨论形成) 个案设计
教师活动 学生活动 (根据个人教学风格和学生特点形成)
复习与巩固1.虚数单位:(1)它的平方等于-1,即 ; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立2. 与-1的关系: 就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-3. 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=14.复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示* 3. 复数的代数形式: 复数通常用字母z表示,即,把复数表示成a+bi的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.5.复数集与其它数集之间的关系:NZQRC.6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小 7. 复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z=0+0i=0表示是实数.故除了原点外,虚轴上的点都表示纯虚数讲解新课1.复数z1与z2的和的定义:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i.2. 复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i.3. 复数的加法运算满足交换律: z1+z2=z2+z1.4. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3)5.乘法运算规则:规定复数的乘法按照以下的法则进行:设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i.其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.2.乘法运算律:(1)z1(z2z3)=(z1z2)z3 (2)z1(z2+z3)=z1z2+z1z3(3)z1(z2+z3)=z1z2+z1z3.例1计算(1-2i)(3+4i)(-2+i)解:(1-2i)(3+4i)(-2+i)=(11-2i) (-2+i)= -20+15i.例2计算:(1)(3+4i) (3-4i) ; (2)(1+ i)2. 解:(1)(3+4i) (3-4i) =32-(4i)2=9-(-16)=25;(2) (1+ i)2=1+2 i+i2=1+2 i-1=2 i.4. 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商,记为:(a+bi)(c+di)或者5.除法运算规则:①设复数a+bi(a,b∈R),除以c+di(c,d∈R),其商为x+yi(x,y∈R),即(a+bi)÷(c+di)=x+yi∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i.∴(cx-dy)+(dx+cy)i=a+bi.由复数相等定义可知解这个方程组,得于是有:(a+bi)÷(c+di)= i.②利用(c+di)(c-di)=c2+d2.于是将的分母有理化得:原式=.∴(a+bi)÷(c+di)=.点评:①是常规方法,②是利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数c+di与复数c-di,相当于我们初中学习的的对偶式,它们之积为1是有理数,而(c+di)·(c-di)=c2+d2是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法例3计算解:例4计算解:例5已知z是虚数,且z+是实数,求证:是纯虚数.证明:设z=a+bi(a、b∈R且b≠0),于是z+=a+bi+=a+bi+.∵z+∈R,∴b-=0.∵b≠0,∴a2+b2=1.∴∵b≠0,a、b∈R,∴是纯虚数扩展练习(高考题选)1.(2007年北京卷) .2. (2007年湖北卷)复数z=a+bi,a,b∈R,且b≠0,若是实数,则有序实数对(a,b)可以是 .(写出一个有序实数对即可)【答案】:.【分析】:是实数,所以,取.【高考考点】:本题主要考查复数的基本概念和运算.【易错点】:复数的运算公式不能记错。【高高考学习网提示】:复数的基本概念和运算,是高考每年必考的内容,应熟练掌握。3.(2007年福建卷)复数等于( D )A. B. C. D.4.(2007年广东卷)若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b为实数),则b= (A) -2 (B) - (C) (D) 2答案:B;解析:(1+bi)(2+i)=(2-b)+(2b+1)i,故2b+1=0,故选B;5.(2007年湖南卷)复数等于( C )A. B. C. D.6.(2007年江西卷)化简的结果是( C )A. B. C. D.7.(2007年全国卷I)设是实数,且是实数,则( B )A. B. C. D.8.(2007年全国卷Ⅱ)设复数满足,则( C )A. B. C. D.9.(2007年陕西卷)在复平面内,复数z=对应的点位于(D)(A)第一象限  (B)第二象限  (C)第在象限 (D)第四象限10.(2007年四川卷)复数的值是(  )(A)0 (B)1 (C) (D)解析:选A..本题考查复数的代数运算. 学生活动:自我探究复数的加减运算法则学生活动:60页练习A 1,2学生活动:61页练习A,B
课堂小结  复数的乘法法则是:(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 复数的代数式相乘,可按多项式类似的办法进行,不必去记公式.复数的除法法则是:i(c+di≠0).两个复数相除较简捷的方法是把它们的商写成分式的形式,然后把分子与分母都乘以分母的共轭复数,再把结果化简
板书设计  
教学反思  
教研组长评价  共案:   个案: 等级:   签字: 时间: