中小学教育资源及组卷应用平台
变量之间的关系
第二节 用关系式表示的变量间关系同步练习
一、单选题
1.(2020·湖北襄阳市·八年级期末)从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是( )
A.物体 B.速度 C.时间 D.空气
2.(2020·全国九年级专题练习)一个长方形的周长为30,则长方形的面积y与长方形一边长x的关系式为( )
A.y=x(15-x) B.y=x(30-x) C.y=x(30-2x) D.y=x(15+x)
3.(2020·湖南长沙市·)在圆的面积计算公式,其中为圆的半径,则变量是( )
A. B. C., D.,
4.(2020·甘肃白银市·平川区四中七年级期末)已知一辆汽车行驶的速度为,它行驶的路程(单位:千米)与行驶的时间(单位:小时)之间的关系是,其中常量是( )
A. B. C. D.和
5.(2019·舞钢市教育局普通教育研究室七年级月考)世纪花园居民小区收取电费的标准是0.6元/千瓦时,当用电量为x(单位:千瓦时)时,收取电费为y(单位:元).在这个问题中,下列说法中正确的是( )
A.x是自变量,0.6元/千瓦时是因变量
B.y是自变量,x是因变量
C.0.6元/千瓦时是自变量,y是因变量
D.x是自变量,y是因变量,0.6元/千瓦时是常量.
6.(2020·贵州毕节市·七年级期末)甲以每小时20km的速度行驶时,他所走的路程S(km)与时间t(h)之间可用公式s=20t来表示,则下列说法正确的是( )
A.数20和s,t都是变量 B.s是常量,数20和t是变量
C.数20是常量,s和t是变量 D.t是常量,数20和s是变量
7.(2020·哈尔滨市第十七中学校八年级月考)在行进路程、速度和时间的相关计算中,若保持行驶的路程不变,则下列说法正确的是( )
A.速度是变量 B.时间是变量
C.速度和时间都是变量 D.速度、时间、路程都是常量
8.(2019·山西七年级月考)如图,李大爷用米长的篱笆靠墙围成一个矩形菜园,若菜园靠墙的一边长为(米),那么菜园的面积(平方米)与的关系式为( )
A. B. C. D.
二、填空题
9.(2020·全国八年级课时练习)每张电影票的售价为10元,某日共售出x张票,票房收入为y元,在这一问题中,_____是常量,_____是变量.
10.(2020·江苏徐州市·张双楼矿校八年级月考)直角三角形两锐角的度数分别为,,其关系式为,其中变量为________,常量为________.
11.(2019·河北石家庄市·八年级期中)汽车开始行驶时,油箱中有油30升,如果每小时耗油5升,那么油箱中的剩余油量(升)和工作时间(时)之间的函数关系式是____,自变量的取值范围____.
12.(2020·江苏连云港市·八年级月考)将长为、宽为的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为,设张白纸粘合后的总长度为,与的函数关系式为___________.
三、解答题
13.(2020·浙江杭州市·七年级其他模拟)声音在空气中传播的速度随气温的变化而变化,科学家测得两种气温下声音传播的速度如下表.如果用表示气温,表示该气温下声音在空气中的传播速度,那么,其中,是常数.
气温(℃) 声音的传播速度(米/秒)
0 336
20 342
(1)求,的值;
(2)求气温为时,声音在空气中的传播速度.
14.(2020·广西南宁市·南宁三中七年级期中)如图在直角梯形中,,,,,,点P,Q同时从点B出发,其中点P以的速度沿着点运动;点Q以的速度沿着点运动,当点Q到达C点后,立即原路返回,当点P到达D点时,另一个动点Q也随之停止运动.
(1)当运动时间时,则三角形的面积为_____;
(2)当运动时间时,则三角形的面积为_____;
(3)当运动时间为时,请用含t的式子表示三角形的面积.
15.(2020·山东济南市·七年级期末)为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:
汽车行驶时间t(h) 0 1 2 3 …
油箱剩余油量Q(L) 100 94 88 82 …
①根据上表的数据,请你写出Q与t的关系式;
②汽车行驶5h后,油箱中的剩余油量是多少;
③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.
答案
一、单选题
1.C 2.A 3.D 4.B 5.D 6.C 7.C 8.C
二、填空题
9.电影票的售价 电影票的张数,票房收入.
10.x,y -1,90
11.y=30-5x 0≤x≤6
12.y=21x+2
三、解答题
13.【详解】
(1)将,代入,得,
(2)由(1)知:,将代入得,
气温为时,声音在空气中的传播速度为345米/秒.
14.【详解】
解:(1)AB=5cm,AD=8cm,BC=14cm,点Q的速度是2cm/s,点P的速度是1cm/s,
当运动时间t=4s时,QB=2t=2×4=8(cm),BP=t=4(cm),
则三角形BPQ的面积为:,
故答案为:16;
(2)当运动时间时,
∵AB=5cm,点P的速度是1cm/s,
∴点P运动到了AD上,
,
则三角形的面积为:,
故答案为:30;
(3)当P在上时,此时,
则三角形的面积为;
当P在上,且Q沿着点运动时,
∵BC=14cm,点Q的速度是2cm/s,
此时,即,
则三角形的面积为;
当P在上,且Q沿着点运动时,
∵AB=5cm,AD=8cm,点P的速度是1cm/s,
此时,即,
则三角形的面积为;
综上,当运动时间为时,三角形的面积.
15.【详解】
解:①Q与t的关系式为:Q=100﹣6t;
②当t=5时,Q=100﹣6×5=70,
答:汽车行驶5h后,油箱中的剩余油量是70L;
③当Q=0时,0=50﹣6t,
6t=50,
解得:t=,
100×=km.
答:该车最多能行驶km.
_21?????????è?????(www.21cnjy.com)_